git.schokokeks.org
Repositories
Help
Report an Issue
SS2012-StatisticalMethods.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
052b6b9
Branches
Tags
master
SS2012-StatisticalMethods.git
6
solution_sheet_6.R
add sheet 6
Michi
commited
052b6b9
at 2012-06-03 16:39:58
solution_sheet_6.R
Blame
History
Raw
#Sheet 6 #Problem1 #setwd("C:/Users/Studium/Desktop/Statistische Methoden/Sheet 6") input=scan(file = "sn_data_riess.dat", what = list(character(), double(), double(), double()), skip=1, multi.line=FALSE) data=cbind(input[[2]], input[[3]], input[[4]]) #Hubble expansion in Dark Energy models #we assume flat Universe H0=72.0 #km/s/Mpc c=3*10^5 #km/s N=186 #number of data #################Model_A######################## #Hubble law for LCDM Hubble_A=function(z,Omegam) H0*sqrt(Omegam*(1+z)^3+(1.0-Omegam)) #H^(-1) Hinv_A=function(zint,Omegam) 1.0/Hubble_A(zint,Omegam) #Luminosity distance dL_A=function(z,Omegami){ dLsol=z for (i in (1:length(z))){ zarg=z[i] I=integrate(Hinv_A,0.0,zarg,Omegam=Omegami) dLsol[i] = c*(1+zarg)*I$value } return(dLsol) } #Magnitude mag_A=function(z,Omegam,M) M+5.0*log10(H0*dL_A(z,Omegam)) # Define function chi2 chi2_A=function(Omegam,M){ chi2sol=0.0 for (i in (1:N)) { chi2sol=chi2sol+((data[i,2]-mag_A(data[i,1],Omegam,M))^2)/(data[i,3])^2 } return(chi2sol) } ###############Model_B#################### #Hubble law for wCDM Hubble_B=function(z,Omegam,w) H0*sqrt(Omegam*(1+z)^3+(1.0-Omegam)*(1+z)^(3*(1+w))) #H^(-1) Hinv_B=function(zint,Omegam, w) 1.0/Hubble_B(zint,Omegam, w) #Luminosity distance dL_B=function(z,Omegami, wi){ dLsol=z for (i in (1:length(z))){ zarg=z[i] I=integrate(Hinv_B,0.0,zarg,Omegam=Omegami, w=wi) dLsol[i] = c*(1+zarg)*I$value } return(dLsol) } #Magnitude mag_B=function(z,Omegam,M, w) M+5.0*log10(H0*dL_B(z,Omegam, w)) # Define function chi2 chi2_B=function(Omegam,M ,w){ chi2sol=0.0 for (i in (1:N)) { chi2sol=chi2sol+((data[i,2]-mag_B(data[i,1],Omegam,M,w))^2)/(data[i,3])^2 } return(chi2sol) } #i) Omegam=0,3, w=m{-2.0, -1.5, -1.0, -0.5} #plot(data[,1], dL_B(data[,1], 0.3, -2.0),type="p", col="black", pch=19, cex=.6) #points(data[,1], dL_B(data[,1], 0.3, -1.5),type="p", col="blue", pch=19, cex=.6) #points(data[,1], dL_B(data[,1], 0.3, -1.0),type="p", col="green", pch=19, cex=.6) #points(data[,1], dL_B(data[,1], 0.3, -0.5),type="p", col="red", pch=19, cex=.6) #windows() #ii) w=-1, Omegam={0.1, 0.2, 0.3, 0.4, 0.5} #plot(data[,1], dL_B(data[,1], 0.1, -1.0),type="p", col="black", pch=19, cex=.6) #points(data[,1], dL_B(data[,1], 0.2, -1.0),type="p", col="blue", pch=19, cex=.6) #points(data[,1], dL_B(data[,1], 0.3, -1.0),type="p", col="green", pch=19, cex=.6) #points(data[,1], dL_B(data[,1], 0.4, -1.0),type="p", col="red", pch=19, cex=.6) #points(data[,1], dL_B(data[,1], 0.5, -1.0),type="p", col="yellow", pch=19, cex=.6) #Problem 2 #windows() #i) Model_A: Omegam variiert von 0.1 bis 0.5 #plot(data[,1], mag_A(data[,1], 0.1, 16),type="p", col="black", pch=19, cex=.6) #points(data[,1], mag_A(data[,1], 0.2, 16),type="p", col="blue", pch=19, cex=.6) #points(data[,1], mag_A(data[,1], 0.3, 16),type="p", col="green", pch=19, cex=.6) #points(data[,1], mag_A(data[,1], 0.4, 16),type="p", col="red", pch=19, cex=.6) #points(data[,1], mag_A(data[,1], 0.5, 16),type="p", col="yellow", pch=19, cex=.6) #ii) #windows() # Model_B: Omegam variiert von 0.1 bis 0.5 bei w=-1.0 #plot(data[,1], mag_B(data[,1], 0.1, 16, -1.0),type="p", col="black", pch=19, cex=.6) #points(data[,1], mag_B(data[,1], 0.2, 16, -1.0),type="p", col="blue", pch=19, cex=.6) #points(data[,1], mag_B(data[,1], 0.3, 16, -1.0),type="p", col="green", pch=19, cex=.6) #points(data[,1], mag_B(data[,1], 0.4, 16, -1.0),type="p", col="red", pch=19, cex=.6) #points(data[,1], mag_B(data[,1], 0.5, 16, -1.0),type="p", col="yellow", pch=19, cex=.6) #windows() # Model_B: w variiert von -2.0 bis -0.5 bei Omegam=0.3 #plot(data[,1], mag_B(data[,1], 0.3, 16, -2.0),type="p", col="black", pch=19, cex=.6) #points(data[,1], mag_B(data[,1], 0.3, 16, -1.5),type="p", col="blue", pch=19, cex=.6) #points(data[,1], mag_B(data[,1], 0.3, 16, -1.0),type="p", col="green", pch=19, cex=.6) #points(data[,1], mag_B(data[,1], 0.3, 16, -0.5),type="p", col="red", pch=19, cex=.6) #Problem 3 #Model_A: chi2 for Omegam={0.0,1.0} and M={15.5, 16.5} values_A=10 Omegam_vec_A=seq(0.0, 1.0, by = 1/values_A) M_vec_A=seq(15.5, 16.5, by=1/values_A) twodim=array(0, dim=c(values_A+1,values_A+1)) for (i in (0:values_A+1)){ for (j in (0:values_A+1)){ twodim[i,j]=chi2_A(Omegam_vec_A[i], M_vec_A[j]) } } #Model_B: chi2 for Omegam={0.0,1.0} and M={15.5, 16.5}, w={-2.0,-0.5} values_B=5 Omegam_vec_B=seq(0.0, 1.0, by = 1/values_B) M_vec_B=seq(15.5, 16.5, by=1/values_B) w_vec=seq(-2.0, -0.5, by=1/(values_B/1.5)) threedim=array(0, dim=c(values_B+1,values_B+1, values_B+1)) for (i in (0:values_B+1)){ for (j in (0:values_B+1)){ for (k in (0:values_B+1)){ threedim[i,j,k]=chi2_B(Omegam_vec_B[i], M_vec_B[j], w_vec[k]) } } } #Find best fit parameters: where is the minimum of chi2? #Model_A: find minimum min_A=twodim[1,1] min_A_pos=array(0, dim=c(2)) for (i in (0:values_A+1)){ for (j in (0:values_A+1)){ if (twodim[i,j] < min_A){ min_A=twodim[i,j] min_A_pos[1]=i min_A_pos[2]=j } } } twodim out1=c("chi2min",min_A) out2=c("Omegam_min",Omegam_vec_A[min_A_pos[1]]) out3=c("M_min",M_vec_A[min_A_pos[2]]) print(out1) print(out2) print(out3) #Model_B: find minimum min_B=threedim[1,1,1] min_B_pos=array(0, dim=c(3)) for (i in (0:values_B+1)){ for (j in (0:values_B+1)){ for (k in (0:values_B+1)){ if (threedim[i,j,k] < min_B){ min_B=threedim[i,j,k] min_B_pos[1]=i min_B_pos[2]=j min_B_pos[3]=k } } } } threedim out1=c("chi2min",min_B) out2=c("Omegam_min",Omegam_vec_B[min_B_pos[1]]) out3=c("M_min",M_vec_B[min_B_pos[2]]) out4=c("w_min",w_vec[min_B_pos[3]]) print(out1) print(out2) print(out3) print(out4) #Problem4 #Model_A posterior function posterior_A=array(0, c(values_A+1, values_A+1)) for (i in (0:values_A)){ for (j in (0:values_A)){ posterior_A[i,j]=exp(-0.5*(twodim[i,j]-min_A)) } } #Model_B posterior function posterior_B=array(0, c(values_B+1, values_B+1, values_B+1)) for (i in (0:values_B)){ for (j in (0:values_B)){ for (k in (0:values_B)){ posterior_B[i,j,k]=exp(-0.5*(threedim[i,j,k]-min_B)) } } } give_function=function(i,j) f=splinefun(w_vec, posterior_B[i,j,]) Myintegrate = function(F,LOW,UP){ pI = integrate(F,LOW,UP) return(pI$value) } integration_B=array(0, c(values_B+1, values_B+1)) for (i in (1:values_B)){ for (j in (1:values_B)){ I=Myintegrate(give_function(i,j),-2.0,-0.5) integration_B[i,j]=I } } contour(Omegam_vec_A,M_vec_A,posterior_A,drawlabels=FALSE,xlab='Omegam',ylab='M',xlim=c(0,1),ylim=c(15.5,16.5),col = "red") contour(Omegam_vec_B,M_vec_B,integration_B,add = TRUE) # Marginalize over M pOmarg=function(Oi) {I=integrate(posterior,13.0,18.0,Omegam=Oi) return(I$value) }