Michi commited on 2012-06-06 16:00:53
Zeige 1 geänderte Dateien mit 259 Einfügungen und 0 Löschungen.
| ... | ... |
@@ -0,0 +1,259 @@ |
| 1 |
+ |
|
| 2 |
+#Problem1 |
|
| 3 |
+ |
|
| 4 |
+input=scan(file = "sn_data_riess.dat", what = list(character(), double(), double(), double()), skip=1, multi.line=FALSE) |
|
| 5 |
+data=cbind(input[[2]], input[[3]], input[[4]]) |
|
| 6 |
+ |
|
| 7 |
+#Hubble expansion in Dark Energy models |
|
| 8 |
+#we assume flat Universe |
|
| 9 |
+H0=72.0 #km/s/Mpc |
|
| 10 |
+c=3*10^5 #km/s |
|
| 11 |
+N=186 #number of data |
|
| 12 |
+ |
|
| 13 |
+#################Model_A######################## |
|
| 14 |
+#Hubble law for LCDM |
|
| 15 |
+Hubble_A=function(z,Omegam) H0*sqrt(Omegam*(1+z)^3+(1.0-Omegam)) |
|
| 16 |
+ |
|
| 17 |
+#H^(-1) |
|
| 18 |
+Hinv_A=function(zint,Omegam) 1.0/Hubble_A(zint,Omegam) |
|
| 19 |
+ |
|
| 20 |
+#Luminosity distance |
|
| 21 |
+dL_A=function(z,Omegami){
|
|
| 22 |
+ dLsol=z |
|
| 23 |
+ for (i in (1:length(z))){
|
|
| 24 |
+ zarg=z[i] |
|
| 25 |
+ I=integrate(Hinv_A,0.0,zarg,Omegam=Omegami) |
|
| 26 |
+ dLsol[i] = c*(1+zarg)*I$value |
|
| 27 |
+ } |
|
| 28 |
+ return(dLsol) |
|
| 29 |
+ } |
|
| 30 |
+ |
|
| 31 |
+#Magnitude |
|
| 32 |
+mag_A=function(z,Omegam,M) M+5.0*log10(H0*dL_A(z,Omegam)) |
|
| 33 |
+ |
|
| 34 |
+# Define function chi2 |
|
| 35 |
+chi2_A=function(Omegam,M){
|
|
| 36 |
+chi2sol=0.0 |
|
| 37 |
+for (i in (1:N)) |
|
| 38 |
+ {
|
|
| 39 |
+ chi2sol=chi2sol+((data[i,2]-mag_A(data[i,1],Omegam,M))^2)/(data[i,3])^2 |
|
| 40 |
+ } |
|
| 41 |
+ return(chi2sol) |
|
| 42 |
+} |
|
| 43 |
+ |
|
| 44 |
+###############Model_B#################### |
|
| 45 |
+#Hubble law for wCDM |
|
| 46 |
+Hubble_B=function(z,Omegam,w) H0*sqrt(Omegam*(1+z)^3+(1.0-Omegam)*(1+z)^(3*(1+w))) |
|
| 47 |
+ |
|
| 48 |
+#H^(-1) |
|
| 49 |
+Hinv_B=function(zint,Omegam, w) 1.0/Hubble_B(zint,Omegam, w) |
|
| 50 |
+ |
|
| 51 |
+ |
|
| 52 |
+#Luminosity distance |
|
| 53 |
+dL_B=function(z,Omegami, wi){
|
|
| 54 |
+ dLsol=z |
|
| 55 |
+ for (i in (1:length(z))){
|
|
| 56 |
+ zarg=z[i] |
|
| 57 |
+ I=integrate(Hinv_B,0.0,zarg,Omegam=Omegami, w=wi) |
|
| 58 |
+ dLsol[i] = c*(1+zarg)*I$value |
|
| 59 |
+ } |
|
| 60 |
+ return(dLsol) |
|
| 61 |
+ } |
|
| 62 |
+ |
|
| 63 |
+#Magnitude |
|
| 64 |
+mag_B=function(z,Omegam,M, w) M+5.0*log10(H0*dL_B(z,Omegam, w)) |
|
| 65 |
+ |
|
| 66 |
+# Define function chi2 |
|
| 67 |
+chi2_B=function(Omegam,M ,w){
|
|
| 68 |
+chi2sol=0.0 |
|
| 69 |
+for (i in (1:N)) |
|
| 70 |
+ {
|
|
| 71 |
+ chi2sol=chi2sol+((data[i,2]-mag_B(data[i,1],Omegam,M,w))^2)/(data[i,3])^2 |
|
| 72 |
+ } |
|
| 73 |
+ return(chi2sol) |
|
| 74 |
+} |
|
| 75 |
+ |
|
| 76 |
+ |
|
| 77 |
+#i) Omegam=0,3, w=m{-2.0, -1.5, -1.0, -0.5}
|
|
| 78 |
+plot(data[,1], dL_B(data[,1], 0.3, -2.0),type="p", col="black", pch=19, cex=.6, xlab='redshift z',ylab='lumiosity distance dL(z)') |
|
| 79 |
+points(data[,1], dL_B(data[,1], 0.3, -1.5),type="p", col="blue", pch=19, cex=.6) |
|
| 80 |
+points(data[,1], dL_B(data[,1], 0.3, -1.0),type="p", col="green", pch=19, cex=.6) |
|
| 81 |
+points(data[,1], dL_B(data[,1], 0.3, -0.5),type="p", col="red", pch=19, cex=.6) |
|
| 82 |
+ |
|
| 83 |
+X11() |
|
| 84 |
+#ii) w=-1, Omegam={0.1, 0.2, 0.3, 0.4, 0.5}
|
|
| 85 |
+plot(data[,1], dL_B(data[,1], 0.1, -1.0),type="p", col="black", pch=19, cex=.6, xlab='redshift z',ylab='lumiosity distance dL(z)') |
|
| 86 |
+points(data[,1], dL_B(data[,1], 0.2, -1.0),type="p", col="blue", pch=19, cex=.6) |
|
| 87 |
+points(data[,1], dL_B(data[,1], 0.3, -1.0),type="p", col="green", pch=19, cex=.6) |
|
| 88 |
+points(data[,1], dL_B(data[,1], 0.4, -1.0),type="p", col="red", pch=19, cex=.6) |
|
| 89 |
+points(data[,1], dL_B(data[,1], 0.5, -1.0),type="p", col="yellow", pch=19, cex=.6) |
|
| 90 |
+ |
|
| 91 |
+ |
|
| 92 |
+#Problem 2 |
|
| 93 |
+ |
|
| 94 |
+ |
|
| 95 |
+X11() |
|
| 96 |
+#i) Model_A: Omegam variiert von 0.1 bis 0.5 |
|
| 97 |
+plot(data[,1], mag_A(data[,1], 0.1, 16),type="p", col="black", pch=19, cex=.6, xlab='redshift z',ylab='theoretical magnitude m') |
|
| 98 |
+points(data[,1], mag_A(data[,1], 0.2, 16),type="p", col="blue", pch=19, cex=.6) |
|
| 99 |
+points(data[,1], mag_A(data[,1], 0.3, 16),type="p", col="green", pch=19, cex=.6) |
|
| 100 |
+points(data[,1], mag_A(data[,1], 0.4, 16),type="p", col="red", pch=19, cex=.6) |
|
| 101 |
+points(data[,1], mag_A(data[,1], 0.5, 16),type="p", col="yellow", pch=19, cex=.6) |
|
| 102 |
+ |
|
| 103 |
+#ii) |
|
| 104 |
+X11() |
|
| 105 |
+# Model_B: Omegam variiert von 0.1 bis 0.5 bei w=-1.0 |
|
| 106 |
+plot(data[,1], mag_B(data[,1], 0.1, 16, -1.0),type="p", col="black", pch=19, cex=.6, xlab='redshift z',ylab='theoretical magnitude m') |
|
| 107 |
+points(data[,1], mag_B(data[,1], 0.2, 16, -1.0),type="p", col="blue", pch=19, cex=.6) |
|
| 108 |
+points(data[,1], mag_B(data[,1], 0.3, 16, -1.0),type="p", col="green", pch=19, cex=.6) |
|
| 109 |
+points(data[,1], mag_B(data[,1], 0.4, 16, -1.0),type="p", col="red", pch=19, cex=.6) |
|
| 110 |
+points(data[,1], mag_B(data[,1], 0.5, 16, -1.0),type="p", col="yellow", pch=19, cex=.6) |
|
| 111 |
+ |
|
| 112 |
+X11() |
|
| 113 |
+# Model_B: w variiert von -2.0 bis -0.5 bei Omegam=0.3 |
|
| 114 |
+plot(data[,1], mag_B(data[,1], 0.3, 16, -2.0),type="p", col="black", pch=19, cex=.6, xlab='redshift z',ylab='theoretical magnitude m') |
|
| 115 |
+points(data[,1], mag_B(data[,1], 0.3, 16, -1.5),type="p", col="blue", pch=19, cex=.6) |
|
| 116 |
+points(data[,1], mag_B(data[,1], 0.3, 16, -1.0),type="p", col="green", pch=19, cex=.6) |
|
| 117 |
+points(data[,1], mag_B(data[,1], 0.3, 16, -0.5),type="p", col="red", pch=19, cex=.6) |
|
| 118 |
+ |
|
| 119 |
+#Problem 3 |
|
| 120 |
+#Model_A: chi2 for Omegam={0.0,1.0} and M={15.5, 16.5}
|
|
| 121 |
+values_A=10 |
|
| 122 |
+Omegam_vec_A=seq(0.0, 1.0, by = 1/values_A) |
|
| 123 |
+M_vec_A=seq(15.5, 16.5, by=1/values_A) |
|
| 124 |
+twodim=array(0, dim=c(values_A+1,values_A+1)) |
|
| 125 |
+for (i in (0:values_A+1)){
|
|
| 126 |
+ for (j in (0:values_A+1)){
|
|
| 127 |
+ twodim[i,j]=chi2_A(Omegam_vec_A[i], M_vec_A[j]) |
|
| 128 |
+ } |
|
| 129 |
+} |
|
| 130 |
+ |
|
| 131 |
+#Model_B: chi2 for Omegam={0.0,1.0} and M={15.5, 16.5}, w={-2.0,-0.5}
|
|
| 132 |
+values_B=10 |
|
| 133 |
+Omegam_vec_B=seq(0.0, 1.0, by = 1/values_B) |
|
| 134 |
+M_vec_B=seq(15.5, 16.5, by=1/values_B) |
|
| 135 |
+w_vec=seq(-2.0, -0.5, by=1/(values_B/1.5)) |
|
| 136 |
+ |
|
| 137 |
+threedim=array(0, dim=c(values_B+1,values_B+1, values_B+1)) |
|
| 138 |
+for (i in (0:values_B+1)){
|
|
| 139 |
+ for (j in (0:values_B+1)){
|
|
| 140 |
+ for (k in (0:values_B+1)){
|
|
| 141 |
+ threedim[i,j,k]=chi2_B(Omegam_vec_B[i], M_vec_B[j], w_vec[k]) |
|
| 142 |
+ } |
|
| 143 |
+ } |
|
| 144 |
+} |
|
| 145 |
+#Find best fit parameters: where is the minimum of chi2? |
|
| 146 |
+#Model_A: find minimum |
|
| 147 |
+min_A=twodim[1,1] |
|
| 148 |
+min_A_pos=array(0, dim=c(2)) |
|
| 149 |
+for (i in (0:values_A+1)){
|
|
| 150 |
+ for (j in (0:values_A+1)){
|
|
| 151 |
+ if (twodim[i,j] < min_A){
|
|
| 152 |
+ min_A=twodim[i,j] |
|
| 153 |
+ min_A_pos[1]=i |
|
| 154 |
+ min_A_pos[2]=j |
|
| 155 |
+ } |
|
| 156 |
+ } |
|
| 157 |
+} |
|
| 158 |
+twodim |
|
| 159 |
+out1=c("chi2min",min_A)
|
|
| 160 |
+out2=c("Omegam_min",Omegam_vec_A[min_A_pos[1]])
|
|
| 161 |
+out3=c("M_min",M_vec_A[min_A_pos[2]])
|
|
| 162 |
+print(out1) |
|
| 163 |
+print(out2) |
|
| 164 |
+print(out3) |
|
| 165 |
+ |
|
| 166 |
+#Model_B: find minimum |
|
| 167 |
+min_B=threedim[1,1,1] |
|
| 168 |
+min_B_pos=array(0, dim=c(3)) |
|
| 169 |
+for (i in (0:values_B+1)){
|
|
| 170 |
+ for (j in (0:values_B+1)){
|
|
| 171 |
+ for (k in (0:values_B+1)){
|
|
| 172 |
+ |
|
| 173 |
+ if (threedim[i,j,k] < min_B){
|
|
| 174 |
+ min_B=threedim[i,j,k] |
|
| 175 |
+ min_B_pos[1]=i |
|
| 176 |
+ min_B_pos[2]=j |
|
| 177 |
+ min_B_pos[3]=k |
|
| 178 |
+ } |
|
| 179 |
+ } |
|
| 180 |
+ } |
|
| 181 |
+} |
|
| 182 |
+threedim |
|
| 183 |
+out1=c("chi2min",min_B)
|
|
| 184 |
+out2=c("Omegam_min",Omegam_vec_B[min_B_pos[1]])
|
|
| 185 |
+out3=c("M_min",M_vec_B[min_B_pos[2]])
|
|
| 186 |
+out4=c("w_min",w_vec[min_B_pos[3]])
|
|
| 187 |
+print(out1) |
|
| 188 |
+print(out2) |
|
| 189 |
+print(out3) |
|
| 190 |
+print(out4) |
|
| 191 |
+ |
|
| 192 |
+#Problem4 |
|
| 193 |
+ |
|
| 194 |
+#Model_A posterior function |
|
| 195 |
+posterior_A=array(0, c(values_A+1, values_A+1)) |
|
| 196 |
+for (i in (0:values_A)){
|
|
| 197 |
+ for (j in (0:values_A)){
|
|
| 198 |
+ posterior_A[i,j]=exp(-0.5*(twodim[i,j]-min_A)) |
|
| 199 |
+ } |
|
| 200 |
+} |
|
| 201 |
+ |
|
| 202 |
+#Model_B posterior function |
|
| 203 |
+posterior_B=array(0, c(values_B+1, values_B+1, values_B+1)) |
|
| 204 |
+for (i in (0:values_B)){
|
|
| 205 |
+ for (j in (0:values_B)){
|
|
| 206 |
+ for (k in (0:values_B)){
|
|
| 207 |
+ posterior_B[i,j,k]=exp(-0.5*(threedim[i,j,k]-min_B)) |
|
| 208 |
+ } |
|
| 209 |
+ } |
|
| 210 |
+} |
|
| 211 |
+ |
|
| 212 |
+give_function=function(i,j) f=splinefun(w_vec, posterior_B[i,j,]) |
|
| 213 |
+Myintegrate = function(F,LOW,UP){
|
|
| 214 |
+ pI = integrate(F,LOW,UP) |
|
| 215 |
+ return(pI$value) |
|
| 216 |
+} |
|
| 217 |
+ |
|
| 218 |
+integration_B=array(0, c(values_B+1, values_B+1)) |
|
| 219 |
+for (i in (1:values_B)){
|
|
| 220 |
+ for (j in (1:values_B)){
|
|
| 221 |
+ I=Myintegrate(give_function(i,j),-2.0,-0.5) |
|
| 222 |
+ integration_B[i,j]=I |
|
| 223 |
+ } |
|
| 224 |
+} |
|
| 225 |
+ |
|
| 226 |
+X11() |
|
| 227 |
+contour(Omegam_vec_A,M_vec_A,posterior_A,drawlabels=FALSE,xlab='Omegam',ylab='M',xlim=c(0,1),ylim=c(15.5,16.5),col = "red") |
|
| 228 |
+contour(Omegam_vec_B,M_vec_B,integration_B,add = TRUE) |
|
| 229 |
+ |
|
| 230 |
+#Problem 5 |
|
| 231 |
+# Marginalize over M |
|
| 232 |
+ |
|
| 233 |
+ |
|
| 234 |
+give_function_MA=function(i) f=splinefun(M_vec_A, posterior_A[i,]) |
|
| 235 |
+give_function_MB=function(i,ii) f=splinefun(M_vec_B, posterior_B[i,,ii]) |
|
| 236 |
+ |
|
| 237 |
+ |
|
| 238 |
+integration_MA=array(0, c(values_A+1)) |
|
| 239 |
+for (i in (1:values_A)){
|
|
| 240 |
+ I=Myintegrate(give_function_MA(i),15.5,16.5) |
|
| 241 |
+ integration_MA[i]=I |
|
| 242 |
+ } |
|
| 243 |
+ |
|
| 244 |
+integration_MB=array(0, c(values_B+1, values_B+1)) |
|
| 245 |
+for (i in (1:values_B)){
|
|
| 246 |
+ for (ii in (1:values_B)){
|
|
| 247 |
+ I=Myintegrate(give_function_MB(i,ii),15.5,16.5) |
|
| 248 |
+ integration_MB[i,ii]=I |
|
| 249 |
+ } |
|
| 250 |
+} |
|
| 251 |
+X11() |
|
| 252 |
+contour(Omegam_vec_B,w_vec,integration_MB,xlab='Omegam',ylab='w',col = "blue") |
|
| 253 |
+ |
|
| 254 |
+#The graphical result of problem 4 shows, that with wCDM theory you get a smaller error for the same resolution (values_A=value_B=10). |
|
| 255 |
+#This is supported by the result of problem 3, where the chi2min of LambdaCDM is 238, the chi2min of wCDM is 229, so that the latter |
|
| 256 |
+#better fits to the data. |
|
| 257 |
+ |
|
| 258 |
+ |
|
| 259 |
+ |
|
| 0 | 260 |