Michi commited on 2012-06-06 16:00:53
Zeige 1 geänderte Dateien mit 259 Einfügungen und 0 Löschungen.
... | ... |
@@ -0,0 +1,259 @@ |
1 |
+ |
|
2 |
+#Problem1 |
|
3 |
+ |
|
4 |
+input=scan(file = "sn_data_riess.dat", what = list(character(), double(), double(), double()), skip=1, multi.line=FALSE) |
|
5 |
+data=cbind(input[[2]], input[[3]], input[[4]]) |
|
6 |
+ |
|
7 |
+#Hubble expansion in Dark Energy models |
|
8 |
+#we assume flat Universe |
|
9 |
+H0=72.0 #km/s/Mpc |
|
10 |
+c=3*10^5 #km/s |
|
11 |
+N=186 #number of data |
|
12 |
+ |
|
13 |
+#################Model_A######################## |
|
14 |
+#Hubble law for LCDM |
|
15 |
+Hubble_A=function(z,Omegam) H0*sqrt(Omegam*(1+z)^3+(1.0-Omegam)) |
|
16 |
+ |
|
17 |
+#H^(-1) |
|
18 |
+Hinv_A=function(zint,Omegam) 1.0/Hubble_A(zint,Omegam) |
|
19 |
+ |
|
20 |
+#Luminosity distance |
|
21 |
+dL_A=function(z,Omegami){ |
|
22 |
+ dLsol=z |
|
23 |
+ for (i in (1:length(z))){ |
|
24 |
+ zarg=z[i] |
|
25 |
+ I=integrate(Hinv_A,0.0,zarg,Omegam=Omegami) |
|
26 |
+ dLsol[i] = c*(1+zarg)*I$value |
|
27 |
+ } |
|
28 |
+ return(dLsol) |
|
29 |
+ } |
|
30 |
+ |
|
31 |
+#Magnitude |
|
32 |
+mag_A=function(z,Omegam,M) M+5.0*log10(H0*dL_A(z,Omegam)) |
|
33 |
+ |
|
34 |
+# Define function chi2 |
|
35 |
+chi2_A=function(Omegam,M){ |
|
36 |
+chi2sol=0.0 |
|
37 |
+for (i in (1:N)) |
|
38 |
+ { |
|
39 |
+ chi2sol=chi2sol+((data[i,2]-mag_A(data[i,1],Omegam,M))^2)/(data[i,3])^2 |
|
40 |
+ } |
|
41 |
+ return(chi2sol) |
|
42 |
+} |
|
43 |
+ |
|
44 |
+###############Model_B#################### |
|
45 |
+#Hubble law for wCDM |
|
46 |
+Hubble_B=function(z,Omegam,w) H0*sqrt(Omegam*(1+z)^3+(1.0-Omegam)*(1+z)^(3*(1+w))) |
|
47 |
+ |
|
48 |
+#H^(-1) |
|
49 |
+Hinv_B=function(zint,Omegam, w) 1.0/Hubble_B(zint,Omegam, w) |
|
50 |
+ |
|
51 |
+ |
|
52 |
+#Luminosity distance |
|
53 |
+dL_B=function(z,Omegami, wi){ |
|
54 |
+ dLsol=z |
|
55 |
+ for (i in (1:length(z))){ |
|
56 |
+ zarg=z[i] |
|
57 |
+ I=integrate(Hinv_B,0.0,zarg,Omegam=Omegami, w=wi) |
|
58 |
+ dLsol[i] = c*(1+zarg)*I$value |
|
59 |
+ } |
|
60 |
+ return(dLsol) |
|
61 |
+ } |
|
62 |
+ |
|
63 |
+#Magnitude |
|
64 |
+mag_B=function(z,Omegam,M, w) M+5.0*log10(H0*dL_B(z,Omegam, w)) |
|
65 |
+ |
|
66 |
+# Define function chi2 |
|
67 |
+chi2_B=function(Omegam,M ,w){ |
|
68 |
+chi2sol=0.0 |
|
69 |
+for (i in (1:N)) |
|
70 |
+ { |
|
71 |
+ chi2sol=chi2sol+((data[i,2]-mag_B(data[i,1],Omegam,M,w))^2)/(data[i,3])^2 |
|
72 |
+ } |
|
73 |
+ return(chi2sol) |
|
74 |
+} |
|
75 |
+ |
|
76 |
+ |
|
77 |
+#i) Omegam=0,3, w=m{-2.0, -1.5, -1.0, -0.5} |
|
78 |
+plot(data[,1], dL_B(data[,1], 0.3, -2.0),type="p", col="black", pch=19, cex=.6, xlab='redshift z',ylab='lumiosity distance dL(z)') |
|
79 |
+points(data[,1], dL_B(data[,1], 0.3, -1.5),type="p", col="blue", pch=19, cex=.6) |
|
80 |
+points(data[,1], dL_B(data[,1], 0.3, -1.0),type="p", col="green", pch=19, cex=.6) |
|
81 |
+points(data[,1], dL_B(data[,1], 0.3, -0.5),type="p", col="red", pch=19, cex=.6) |
|
82 |
+ |
|
83 |
+X11() |
|
84 |
+#ii) w=-1, Omegam={0.1, 0.2, 0.3, 0.4, 0.5} |
|
85 |
+plot(data[,1], dL_B(data[,1], 0.1, -1.0),type="p", col="black", pch=19, cex=.6, xlab='redshift z',ylab='lumiosity distance dL(z)') |
|
86 |
+points(data[,1], dL_B(data[,1], 0.2, -1.0),type="p", col="blue", pch=19, cex=.6) |
|
87 |
+points(data[,1], dL_B(data[,1], 0.3, -1.0),type="p", col="green", pch=19, cex=.6) |
|
88 |
+points(data[,1], dL_B(data[,1], 0.4, -1.0),type="p", col="red", pch=19, cex=.6) |
|
89 |
+points(data[,1], dL_B(data[,1], 0.5, -1.0),type="p", col="yellow", pch=19, cex=.6) |
|
90 |
+ |
|
91 |
+ |
|
92 |
+#Problem 2 |
|
93 |
+ |
|
94 |
+ |
|
95 |
+X11() |
|
96 |
+#i) Model_A: Omegam variiert von 0.1 bis 0.5 |
|
97 |
+plot(data[,1], mag_A(data[,1], 0.1, 16),type="p", col="black", pch=19, cex=.6, xlab='redshift z',ylab='theoretical magnitude m') |
|
98 |
+points(data[,1], mag_A(data[,1], 0.2, 16),type="p", col="blue", pch=19, cex=.6) |
|
99 |
+points(data[,1], mag_A(data[,1], 0.3, 16),type="p", col="green", pch=19, cex=.6) |
|
100 |
+points(data[,1], mag_A(data[,1], 0.4, 16),type="p", col="red", pch=19, cex=.6) |
|
101 |
+points(data[,1], mag_A(data[,1], 0.5, 16),type="p", col="yellow", pch=19, cex=.6) |
|
102 |
+ |
|
103 |
+#ii) |
|
104 |
+X11() |
|
105 |
+# Model_B: Omegam variiert von 0.1 bis 0.5 bei w=-1.0 |
|
106 |
+plot(data[,1], mag_B(data[,1], 0.1, 16, -1.0),type="p", col="black", pch=19, cex=.6, xlab='redshift z',ylab='theoretical magnitude m') |
|
107 |
+points(data[,1], mag_B(data[,1], 0.2, 16, -1.0),type="p", col="blue", pch=19, cex=.6) |
|
108 |
+points(data[,1], mag_B(data[,1], 0.3, 16, -1.0),type="p", col="green", pch=19, cex=.6) |
|
109 |
+points(data[,1], mag_B(data[,1], 0.4, 16, -1.0),type="p", col="red", pch=19, cex=.6) |
|
110 |
+points(data[,1], mag_B(data[,1], 0.5, 16, -1.0),type="p", col="yellow", pch=19, cex=.6) |
|
111 |
+ |
|
112 |
+X11() |
|
113 |
+# Model_B: w variiert von -2.0 bis -0.5 bei Omegam=0.3 |
|
114 |
+plot(data[,1], mag_B(data[,1], 0.3, 16, -2.0),type="p", col="black", pch=19, cex=.6, xlab='redshift z',ylab='theoretical magnitude m') |
|
115 |
+points(data[,1], mag_B(data[,1], 0.3, 16, -1.5),type="p", col="blue", pch=19, cex=.6) |
|
116 |
+points(data[,1], mag_B(data[,1], 0.3, 16, -1.0),type="p", col="green", pch=19, cex=.6) |
|
117 |
+points(data[,1], mag_B(data[,1], 0.3, 16, -0.5),type="p", col="red", pch=19, cex=.6) |
|
118 |
+ |
|
119 |
+#Problem 3 |
|
120 |
+#Model_A: chi2 for Omegam={0.0,1.0} and M={15.5, 16.5} |
|
121 |
+values_A=10 |
|
122 |
+Omegam_vec_A=seq(0.0, 1.0, by = 1/values_A) |
|
123 |
+M_vec_A=seq(15.5, 16.5, by=1/values_A) |
|
124 |
+twodim=array(0, dim=c(values_A+1,values_A+1)) |
|
125 |
+for (i in (0:values_A+1)){ |
|
126 |
+ for (j in (0:values_A+1)){ |
|
127 |
+ twodim[i,j]=chi2_A(Omegam_vec_A[i], M_vec_A[j]) |
|
128 |
+ } |
|
129 |
+} |
|
130 |
+ |
|
131 |
+#Model_B: chi2 for Omegam={0.0,1.0} and M={15.5, 16.5}, w={-2.0,-0.5} |
|
132 |
+values_B=10 |
|
133 |
+Omegam_vec_B=seq(0.0, 1.0, by = 1/values_B) |
|
134 |
+M_vec_B=seq(15.5, 16.5, by=1/values_B) |
|
135 |
+w_vec=seq(-2.0, -0.5, by=1/(values_B/1.5)) |
|
136 |
+ |
|
137 |
+threedim=array(0, dim=c(values_B+1,values_B+1, values_B+1)) |
|
138 |
+for (i in (0:values_B+1)){ |
|
139 |
+ for (j in (0:values_B+1)){ |
|
140 |
+ for (k in (0:values_B+1)){ |
|
141 |
+ threedim[i,j,k]=chi2_B(Omegam_vec_B[i], M_vec_B[j], w_vec[k]) |
|
142 |
+ } |
|
143 |
+ } |
|
144 |
+} |
|
145 |
+#Find best fit parameters: where is the minimum of chi2? |
|
146 |
+#Model_A: find minimum |
|
147 |
+min_A=twodim[1,1] |
|
148 |
+min_A_pos=array(0, dim=c(2)) |
|
149 |
+for (i in (0:values_A+1)){ |
|
150 |
+ for (j in (0:values_A+1)){ |
|
151 |
+ if (twodim[i,j] < min_A){ |
|
152 |
+ min_A=twodim[i,j] |
|
153 |
+ min_A_pos[1]=i |
|
154 |
+ min_A_pos[2]=j |
|
155 |
+ } |
|
156 |
+ } |
|
157 |
+} |
|
158 |
+twodim |
|
159 |
+out1=c("chi2min",min_A) |
|
160 |
+out2=c("Omegam_min",Omegam_vec_A[min_A_pos[1]]) |
|
161 |
+out3=c("M_min",M_vec_A[min_A_pos[2]]) |
|
162 |
+print(out1) |
|
163 |
+print(out2) |
|
164 |
+print(out3) |
|
165 |
+ |
|
166 |
+#Model_B: find minimum |
|
167 |
+min_B=threedim[1,1,1] |
|
168 |
+min_B_pos=array(0, dim=c(3)) |
|
169 |
+for (i in (0:values_B+1)){ |
|
170 |
+ for (j in (0:values_B+1)){ |
|
171 |
+ for (k in (0:values_B+1)){ |
|
172 |
+ |
|
173 |
+ if (threedim[i,j,k] < min_B){ |
|
174 |
+ min_B=threedim[i,j,k] |
|
175 |
+ min_B_pos[1]=i |
|
176 |
+ min_B_pos[2]=j |
|
177 |
+ min_B_pos[3]=k |
|
178 |
+ } |
|
179 |
+ } |
|
180 |
+ } |
|
181 |
+} |
|
182 |
+threedim |
|
183 |
+out1=c("chi2min",min_B) |
|
184 |
+out2=c("Omegam_min",Omegam_vec_B[min_B_pos[1]]) |
|
185 |
+out3=c("M_min",M_vec_B[min_B_pos[2]]) |
|
186 |
+out4=c("w_min",w_vec[min_B_pos[3]]) |
|
187 |
+print(out1) |
|
188 |
+print(out2) |
|
189 |
+print(out3) |
|
190 |
+print(out4) |
|
191 |
+ |
|
192 |
+#Problem4 |
|
193 |
+ |
|
194 |
+#Model_A posterior function |
|
195 |
+posterior_A=array(0, c(values_A+1, values_A+1)) |
|
196 |
+for (i in (0:values_A)){ |
|
197 |
+ for (j in (0:values_A)){ |
|
198 |
+ posterior_A[i,j]=exp(-0.5*(twodim[i,j]-min_A)) |
|
199 |
+ } |
|
200 |
+} |
|
201 |
+ |
|
202 |
+#Model_B posterior function |
|
203 |
+posterior_B=array(0, c(values_B+1, values_B+1, values_B+1)) |
|
204 |
+for (i in (0:values_B)){ |
|
205 |
+ for (j in (0:values_B)){ |
|
206 |
+ for (k in (0:values_B)){ |
|
207 |
+ posterior_B[i,j,k]=exp(-0.5*(threedim[i,j,k]-min_B)) |
|
208 |
+ } |
|
209 |
+ } |
|
210 |
+} |
|
211 |
+ |
|
212 |
+give_function=function(i,j) f=splinefun(w_vec, posterior_B[i,j,]) |
|
213 |
+Myintegrate = function(F,LOW,UP){ |
|
214 |
+ pI = integrate(F,LOW,UP) |
|
215 |
+ return(pI$value) |
|
216 |
+} |
|
217 |
+ |
|
218 |
+integration_B=array(0, c(values_B+1, values_B+1)) |
|
219 |
+for (i in (1:values_B)){ |
|
220 |
+ for (j in (1:values_B)){ |
|
221 |
+ I=Myintegrate(give_function(i,j),-2.0,-0.5) |
|
222 |
+ integration_B[i,j]=I |
|
223 |
+ } |
|
224 |
+} |
|
225 |
+ |
|
226 |
+X11() |
|
227 |
+contour(Omegam_vec_A,M_vec_A,posterior_A,drawlabels=FALSE,xlab='Omegam',ylab='M',xlim=c(0,1),ylim=c(15.5,16.5),col = "red") |
|
228 |
+contour(Omegam_vec_B,M_vec_B,integration_B,add = TRUE) |
|
229 |
+ |
|
230 |
+#Problem 5 |
|
231 |
+# Marginalize over M |
|
232 |
+ |
|
233 |
+ |
|
234 |
+give_function_MA=function(i) f=splinefun(M_vec_A, posterior_A[i,]) |
|
235 |
+give_function_MB=function(i,ii) f=splinefun(M_vec_B, posterior_B[i,,ii]) |
|
236 |
+ |
|
237 |
+ |
|
238 |
+integration_MA=array(0, c(values_A+1)) |
|
239 |
+for (i in (1:values_A)){ |
|
240 |
+ I=Myintegrate(give_function_MA(i),15.5,16.5) |
|
241 |
+ integration_MA[i]=I |
|
242 |
+ } |
|
243 |
+ |
|
244 |
+integration_MB=array(0, c(values_B+1, values_B+1)) |
|
245 |
+for (i in (1:values_B)){ |
|
246 |
+ for (ii in (1:values_B)){ |
|
247 |
+ I=Myintegrate(give_function_MB(i,ii),15.5,16.5) |
|
248 |
+ integration_MB[i,ii]=I |
|
249 |
+ } |
|
250 |
+} |
|
251 |
+X11() |
|
252 |
+contour(Omegam_vec_B,w_vec,integration_MB,xlab='Omegam',ylab='w',col = "blue") |
|
253 |
+ |
|
254 |
+#The graphical result of problem 4 shows, that with wCDM theory you get a smaller error for the same resolution (values_A=value_B=10). |
|
255 |
+#This is supported by the result of problem 3, where the chi2min of LambdaCDM is 238, the chi2min of wCDM is 229, so that the latter |
|
256 |
+#better fits to the data. |
|
257 |
+ |
|
258 |
+ |
|
259 |
+ |
|
0 | 260 |