Michi commited on 2012-06-03 16:52:14
Zeige 15 geänderte Dateien mit 1731 Einfügungen und 0 Löschungen.
... | ... |
@@ -0,0 +1,51 @@ |
1 |
+read.table("M100_spec.txt",header=TRUE) |
|
2 |
+spec = read.table("M100_spec.txt",header=TRUE) |
|
3 |
+ |
|
4 |
+spec.fit <- lm(spec[175:746,2] ~ [175:746,1]) |
|
5 |
+spec.fit <- lm(spec[175:746,2] ~ spec[175:746,1]) |
|
6 |
+summary(spec.fit) |
|
7 |
+abline(spec.fit) |
|
8 |
+plot(spec[:,1],spec[:,2]) |
|
9 |
+plot(spec[,1],spec[,2]) |
|
10 |
+abline(spec.fit) |
|
11 |
+plot(spec[,1],spec[,2],type=l) |
|
12 |
+plot(spec[,1],spec[,2],l) |
|
13 |
+plot(spec[,1],spec[,2],'l') |
|
14 |
+abline(spec.fit) |
|
15 |
+x <- array(1:20, dim=c(4,5)) |
|
16 |
+x |
|
17 |
+spec[:5,1] |
|
18 |
+spec[1:5,1] |
|
19 |
+spec[1:5,] |
|
20 |
+spec[2:5,] |
|
21 |
+spec |
|
22 |
+spec = read.table("M100_spec.txt",header=FALSE) |
|
23 |
+spec[1:3,] |
|
24 |
+spec.boolmask = 21 > spec[,2] >17 |
|
25 |
+spec.boolmask = (spec[,2] >17) |
|
26 |
+spec.boolmask = (spec[,2] >17) & (spec[,2] <20) |
|
27 |
+spec.boolmask |
|
28 |
+spec.fit <- lm(spec[spec.boolmask,2] ~ [spec.boolmask,1]) |
|
29 |
+spec.boolmask |
|
30 |
+spec.fit <- lm(spec[spec.boolmask,2] ~ spec[spec.boolmask,1]) |
|
31 |
+abline(spec.fit) |
|
32 |
+summery(spec.fit) |
|
33 |
+summary(spec.fit) |
|
34 |
+coef(spec.fit)[1] |
|
35 |
+spec.zero = spec - coef(spec.fit)[1] |
|
36 |
+spec.zero = spec |
|
37 |
+spec.zero[,2] = spec[,2] - coef(spec.fit)[1] |
|
38 |
+plot(spec[,1],spec.zero[,2],'l') |
|
39 |
+plot(spec[,1],spec.zero[,2],'l') |
|
40 |
+spec.zero = spec - coef(spec.fit)[1] |
|
41 |
+spec.zero |
|
42 |
+spec.notNull = (spec != 0) |
|
43 |
+spec.notNull |
|
44 |
+spec.notNull = (spec[,2] != 0) |
|
45 |
+spec.notNull |
|
46 |
+ls |
|
47 |
+plot(spec[spec.notNull,1],spec.zero[notNull,2],'l') |
|
48 |
+plot(spec[spec.notNull,1],spec.zero[spec.notNull,2],'l') |
|
49 |
+save() |
|
50 |
+save(fiel="flux2zero.R") |
|
51 |
+q() |
... | ... |
@@ -0,0 +1,1202 @@ |
1 |
+# lambda Flux ((10^{-17} erg s^{-1}"+aaangs+"^{-1} cm^{-2})) |
|
2 |
+ 6248.6000 0.00000 |
|
3 |
+ 6249.1540 0.00000 |
|
4 |
+ 6249.7080 0.00000 |
|
5 |
+ 6250.2620 0.00000 |
|
6 |
+ 6250.8160 0.00000 |
|
7 |
+ 6251.3700 0.00000 |
|
8 |
+ 6251.9240 0.00000 |
|
9 |
+ 6252.4780 0.00000 |
|
10 |
+ 6253.0320 0.00000 |
|
11 |
+ 6253.5860 0.00000 |
|
12 |
+ 6254.1400 0.00000 |
|
13 |
+ 6254.6940 0.00000 |
|
14 |
+ 6255.2480 0.00000 |
|
15 |
+ 6255.8020 0.00000 |
|
16 |
+ 6256.3560 0.00000 |
|
17 |
+ 6256.9100 0.00000 |
|
18 |
+ 6257.4640 0.00000 |
|
19 |
+ 6258.0180 0.00000 |
|
20 |
+ 6258.5720 0.00000 |
|
21 |
+ 6259.1260 0.00000 |
|
22 |
+ 6259.6800 0.00000 |
|
23 |
+ 6260.2340 0.00000 |
|
24 |
+ 6260.7880 0.00000 |
|
25 |
+ 6261.3420 0.00000 |
|
26 |
+ 6261.8960 0.00000 |
|
27 |
+ 6262.4500 0.00000 |
|
28 |
+ 6263.0040 0.00000 |
|
29 |
+ 6263.5580 0.00000 |
|
30 |
+ 6264.1120 0.00000 |
|
31 |
+ 6264.6660 0.00000 |
|
32 |
+ 6265.2200 0.00000 |
|
33 |
+ 6265.7740 0.00000 |
|
34 |
+ 6266.3280 0.00000 |
|
35 |
+ 6266.8820 0.00000 |
|
36 |
+ 6267.4360 0.00000 |
|
37 |
+ 6267.9900 0.00000 |
|
38 |
+ 6268.5440 0.00000 |
|
39 |
+ 6269.0980 0.00000 |
|
40 |
+ 6269.6520 0.00000 |
|
41 |
+ 6270.2060 0.00000 |
|
42 |
+ 6270.7600 0.00000 |
|
43 |
+ 6271.3140 0.00000 |
|
44 |
+ 6271.8680 0.00000 |
|
45 |
+ 6272.4220 0.00000 |
|
46 |
+ 6272.9760 0.00000 |
|
47 |
+ 6273.5300 0.00000 |
|
48 |
+ 6274.0840 0.00000 |
|
49 |
+ 6274.6380 0.00000 |
|
50 |
+ 6275.1920 0.00000 |
|
51 |
+ 6275.7460 0.00000 |
|
52 |
+ 6276.3000 0.00000 |
|
53 |
+ 6276.8540 0.00000 |
|
54 |
+ 6277.4080 0.00000 |
|
55 |
+ 6277.9620 0.00000 |
|
56 |
+ 6278.5160 0.00000 |
|
57 |
+ 6279.0700 0.00000 |
|
58 |
+ 6279.6240 0.00000 |
|
59 |
+ 6280.1780 0.00000 |
|
60 |
+ 6280.7320 0.00000 |
|
61 |
+ 6281.2860 0.00000 |
|
62 |
+ 6281.8400 0.00000 |
|
63 |
+ 6282.3940 0.00000 |
|
64 |
+ 6282.9480 0.00000 |
|
65 |
+ 6283.5020 0.00000 |
|
66 |
+ 6284.0560 0.00000 |
|
67 |
+ 6284.6100 0.00000 |
|
68 |
+ 6285.1640 0.00000 |
|
69 |
+ 6285.7180 0.00000 |
|
70 |
+ 6286.2720 0.00000 |
|
71 |
+ 6286.8260 0.00000 |
|
72 |
+ 6287.3800 0.00000 |
|
73 |
+ 6287.9340 0.00000 |
|
74 |
+ 6288.4880 0.00000 |
|
75 |
+ 6289.0420 0.00000 |
|
76 |
+ 6289.5960 0.00000 |
|
77 |
+ 6290.1500 0.00000 |
|
78 |
+ 6290.7040 0.00000 |
|
79 |
+ 6291.2580 0.00000 |
|
80 |
+ 6291.8120 0.00000 |
|
81 |
+ 6292.3660 0.00000 |
|
82 |
+ 6292.9200 0.00000 |
|
83 |
+ 6293.4740 0.00000 |
|
84 |
+ 6294.0280 0.00000 |
|
85 |
+ 6294.5820 0.00000 |
|
86 |
+ 6295.1360 0.00000 |
|
87 |
+ 6295.6900 0.00000 |
|
88 |
+ 6296.2440 0.00000 |
|
89 |
+ 6296.7980 28.1966 |
|
90 |
+ 6297.3520 16.9010 |
|
91 |
+ 6297.9060 18.9971 |
|
92 |
+ 6298.4600 20.8780 |
|
93 |
+ 6299.0140 18.5692 |
|
94 |
+ 6299.5680 19.7306 |
|
95 |
+ 6300.1220 18.9521 |
|
96 |
+ 6300.6760 19.8322 |
|
97 |
+ 6301.2300 19.6677 |
|
98 |
+ 6301.7840 18.0532 |
|
99 |
+ 6302.3380 19.3939 |
|
100 |
+ 6302.8920 18.4899 |
|
101 |
+ 6303.4460 20.9124 |
|
102 |
+ 6304.0000 19.2130 |
|
103 |
+ 6304.5540 22.4971 |
|
104 |
+ 6305.1080 19.4275 |
|
105 |
+ 6305.6620 18.5390 |
|
106 |
+ 6306.2160 18.4152 |
|
107 |
+ 6306.7700 18.6887 |
|
108 |
+ 6307.3240 19.3154 |
|
109 |
+ 6307.8780 20.1014 |
|
110 |
+ 6308.4320 20.6188 |
|
111 |
+ 6308.9860 18.6696 |
|
112 |
+ 6309.5400 18.8784 |
|
113 |
+ 6310.0940 17.0876 |
|
114 |
+ 6310.6480 19.5688 |
|
115 |
+ 6311.2020 19.2849 |
|
116 |
+ 6311.7560 19.1638 |
|
117 |
+ 6312.3100 18.7903 |
|
118 |
+ 6312.8640 19.1984 |
|
119 |
+ 6313.4180 19.3322 |
|
120 |
+ 6313.9720 19.3685 |
|
121 |
+ 6314.5260 17.8240 |
|
122 |
+ 6315.0800 17.4342 |
|
123 |
+ 6315.6340 18.4613 |
|
124 |
+ 6316.1880 19.7234 |
|
125 |
+ 6316.7420 20.0285 |
|
126 |
+ 6317.2960 17.1575 |
|
127 |
+ 6317.8500 17.4727 |
|
128 |
+ 6318.4040 18.2427 |
|
129 |
+ 6318.9580 19.3886 |
|
130 |
+ 6319.5120 19.4544 |
|
131 |
+ 6320.0660 20.2449 |
|
132 |
+ 6320.6200 19.5405 |
|
133 |
+ 6321.1740 20.5919 |
|
134 |
+ 6321.7280 19.9698 |
|
135 |
+ 6322.2820 20.8797 |
|
136 |
+ 6322.8360 22.5275 |
|
137 |
+ 6323.3900 20.9754 |
|
138 |
+ 6323.9440 20.4816 |
|
139 |
+ 6324.4980 20.4083 |
|
140 |
+ 6325.0520 20.9788 |
|
141 |
+ 6325.6060 19.2594 |
|
142 |
+ 6326.1600 18.1152 |
|
143 |
+ 6326.7140 20.7610 |
|
144 |
+ 6327.2680 19.0925 |
|
145 |
+ 6327.8220 19.5991 |
|
146 |
+ 6328.3760 18.9765 |
|
147 |
+ 6328.9300 19.7201 |
|
148 |
+ 6329.4840 19.8251 |
|
149 |
+ 6330.0380 20.7413 |
|
150 |
+ 6330.5920 21.6081 |
|
151 |
+ 6331.1460 21.5628 |
|
152 |
+ 6331.7000 21.3715 |
|
153 |
+ 6332.2540 23.3972 |
|
154 |
+ 6332.8080 22.8690 |
|
155 |
+ 6333.3620 25.8322 |
|
156 |
+ 6333.9160 25.0590 |
|
157 |
+ 6334.4700 25.7084 |
|
158 |
+ 6335.0240 25.9620 |
|
159 |
+ 6335.5780 24.7512 |
|
160 |
+ 6336.1320 24.9528 |
|
161 |
+ 6336.6860 23.9990 |
|
162 |
+ 6337.2400 21.8191 |
|
163 |
+ 6337.7940 21.0391 |
|
164 |
+ 6338.3480 21.7726 |
|
165 |
+ 6338.9020 21.5823 |
|
166 |
+ 6339.4560 20.4367 |
|
167 |
+ 6340.0100 21.0235 |
|
168 |
+ 6340.5640 20.4038 |
|
169 |
+ 6341.1180 20.1036 |
|
170 |
+ 6341.6720 18.9850 |
|
171 |
+ 6342.2260 20.0438 |
|
172 |
+ 6342.7800 20.9713 |
|
173 |
+ 6343.3340 20.8324 |
|
174 |
+ 6343.8880 19.9256 |
|
175 |
+ 6344.4420 19.7780 |
|
176 |
+ 6344.9960 20.3833 |
|
177 |
+ 6345.5500 19.9043 |
|
178 |
+ 6346.1040 20.2789 |
|
179 |
+ 6346.6580 19.7787 |
|
180 |
+ 6347.2120 20.6096 |
|
181 |
+ 6347.7660 20.9657 |
|
182 |
+ 6348.3200 19.9545 |
|
183 |
+ 6348.8740 19.5408 |
|
184 |
+ 6349.4280 21.0450 |
|
185 |
+ 6349.9820 20.3079 |
|
186 |
+ 6350.5360 19.2938 |
|
187 |
+ 6351.0900 19.9137 |
|
188 |
+ 6351.6440 20.2691 |
|
189 |
+ 6352.1980 20.4626 |
|
190 |
+ 6352.7520 19.5967 |
|
191 |
+ 6353.3060 19.0879 |
|
192 |
+ 6353.8600 18.7181 |
|
193 |
+ 6354.4140 18.6576 |
|
194 |
+ 6354.9680 18.1687 |
|
195 |
+ 6355.5220 17.9342 |
|
196 |
+ 6356.0760 19.3493 |
|
197 |
+ 6356.6300 19.2049 |
|
198 |
+ 6357.1840 20.0517 |
|
199 |
+ 6357.7380 20.6566 |
|
200 |
+ 6358.2920 20.0795 |
|
201 |
+ 6358.8460 19.6292 |
|
202 |
+ 6359.4000 20.6407 |
|
203 |
+ 6359.9540 21.4774 |
|
204 |
+ 6360.5080 21.0786 |
|
205 |
+ 6361.0620 20.3557 |
|
206 |
+ 6361.6160 20.4000 |
|
207 |
+ 6362.1700 20.9715 |
|
208 |
+ 6362.7240 21.6996 |
|
209 |
+ 6363.2780 23.0209 |
|
210 |
+ 6363.8320 23.7886 |
|
211 |
+ 6364.3860 22.2981 |
|
212 |
+ 6364.9400 20.7709 |
|
213 |
+ 6365.4940 20.9334 |
|
214 |
+ 6366.0480 21.1331 |
|
215 |
+ 6366.6020 20.2686 |
|
216 |
+ 6367.1560 20.0964 |
|
217 |
+ 6367.7100 20.1502 |
|
218 |
+ 6368.2640 20.4474 |
|
219 |
+ 6368.8180 21.3246 |
|
220 |
+ 6369.3720 20.4840 |
|
221 |
+ 6369.9260 19.6883 |
|
222 |
+ 6370.4800 19.9162 |
|
223 |
+ 6371.0340 19.1407 |
|
224 |
+ 6371.5880 18.6808 |
|
225 |
+ 6372.1420 18.9308 |
|
226 |
+ 6372.6960 18.7782 |
|
227 |
+ 6373.2500 20.4495 |
|
228 |
+ 6373.8040 20.6244 |
|
229 |
+ 6374.3580 21.1210 |
|
230 |
+ 6374.9120 21.5160 |
|
231 |
+ 6375.4660 19.7167 |
|
232 |
+ 6376.0200 20.1573 |
|
233 |
+ 6376.5740 19.9482 |
|
234 |
+ 6377.1280 18.9084 |
|
235 |
+ 6377.6820 19.4178 |
|
236 |
+ 6378.2360 20.3309 |
|
237 |
+ 6378.7900 19.4465 |
|
238 |
+ 6379.3440 19.1042 |
|
239 |
+ 6379.8980 20.3540 |
|
240 |
+ 6380.4520 19.9988 |
|
241 |
+ 6381.0060 20.3102 |
|
242 |
+ 6381.5600 21.5019 |
|
243 |
+ 6382.1140 21.4907 |
|
244 |
+ 6382.6680 21.4798 |
|
245 |
+ 6383.2220 20.3653 |
|
246 |
+ 6383.7760 21.0955 |
|
247 |
+ 6384.3300 19.7839 |
|
248 |
+ 6384.8840 19.5822 |
|
249 |
+ 6385.4380 20.5195 |
|
250 |
+ 6385.9920 20.3335 |
|
251 |
+ 6386.5460 20.6013 |
|
252 |
+ 6387.1000 20.9891 |
|
253 |
+ 6387.6540 21.0284 |
|
254 |
+ 6388.2080 20.8663 |
|
255 |
+ 6388.7620 20.9138 |
|
256 |
+ 6389.3160 21.0911 |
|
257 |
+ 6389.8700 21.4152 |
|
258 |
+ 6390.4240 20.2149 |
|
259 |
+ 6390.9780 19.0383 |
|
260 |
+ 6391.5320 19.9420 |
|
261 |
+ 6392.0860 19.2547 |
|
262 |
+ 6392.6400 18.6413 |
|
263 |
+ 6393.1940 19.2761 |
|
264 |
+ 6393.7480 20.7316 |
|
265 |
+ 6394.3020 21.1625 |
|
266 |
+ 6394.8560 19.1657 |
|
267 |
+ 6395.4100 19.0795 |
|
268 |
+ 6395.9640 19.7464 |
|
269 |
+ 6396.5180 18.5395 |
|
270 |
+ 6397.0720 21.2910 |
|
271 |
+ 6397.6260 21.5000 |
|
272 |
+ 6398.1800 20.5851 |
|
273 |
+ 6398.7340 20.1652 |
|
274 |
+ 6399.2880 20.8072 |
|
275 |
+ 6399.8420 19.9666 |
|
276 |
+ 6400.3960 19.4763 |
|
277 |
+ 6400.9500 19.9386 |
|
278 |
+ 6401.5040 19.5952 |
|
279 |
+ 6402.0580 19.8548 |
|
280 |
+ 6402.6120 20.2395 |
|
281 |
+ 6403.1660 20.3432 |
|
282 |
+ 6403.7200 20.0623 |
|
283 |
+ 6404.2740 19.1232 |
|
284 |
+ 6404.8280 20.6660 |
|
285 |
+ 6405.3820 21.2264 |
|
286 |
+ 6405.9360 19.9968 |
|
287 |
+ 6406.4900 21.7730 |
|
288 |
+ 6407.0440 20.9638 |
|
289 |
+ 6407.5980 19.5268 |
|
290 |
+ 6408.1520 22.6426 |
|
291 |
+ 6408.7060 21.2944 |
|
292 |
+ 6409.2600 21.2414 |
|
293 |
+ 6409.8140 22.6271 |
|
294 |
+ 6410.3680 21.1302 |
|
295 |
+ 6410.9220 20.0924 |
|
296 |
+ 6411.4760 20.0184 |
|
297 |
+ 6412.0300 19.3069 |
|
298 |
+ 6412.5840 19.8463 |
|
299 |
+ 6413.1380 18.3898 |
|
300 |
+ 6413.6920 20.5393 |
|
301 |
+ 6414.2460 21.5158 |
|
302 |
+ 6414.8000 20.7910 |
|
303 |
+ 6415.3540 19.0696 |
|
304 |
+ 6415.9080 20.7009 |
|
305 |
+ 6416.4620 20.6294 |
|
306 |
+ 6417.0160 19.7967 |
|
307 |
+ 6417.5700 21.6159 |
|
308 |
+ 6418.1240 21.2850 |
|
309 |
+ 6418.6780 20.8644 |
|
310 |
+ 6419.2320 19.3014 |
|
311 |
+ 6419.7860 19.1776 |
|
312 |
+ 6420.3400 21.0048 |
|
313 |
+ 6420.8940 19.5610 |
|
314 |
+ 6421.4480 20.2111 |
|
315 |
+ 6422.0020 19.7493 |
|
316 |
+ 6422.5560 20.6237 |
|
317 |
+ 6423.1100 20.6793 |
|
318 |
+ 6423.6640 19.7174 |
|
319 |
+ 6424.2180 21.7265 |
|
320 |
+ 6424.7720 20.8540 |
|
321 |
+ 6425.3260 19.8743 |
|
322 |
+ 6425.8800 19.6253 |
|
323 |
+ 6426.4340 21.6716 |
|
324 |
+ 6426.9880 19.2786 |
|
325 |
+ 6427.5420 22.5170 |
|
326 |
+ 6428.0960 20.6717 |
|
327 |
+ 6428.6500 19.7288 |
|
328 |
+ 6429.2040 20.9789 |
|
329 |
+ 6429.7580 20.2257 |
|
330 |
+ 6430.3120 17.7914 |
|
331 |
+ 6430.8660 17.9932 |
|
332 |
+ 6431.4200 18.3601 |
|
333 |
+ 6431.9740 20.6140 |
|
334 |
+ 6432.5280 20.6605 |
|
335 |
+ 6433.0820 19.7340 |
|
336 |
+ 6433.6360 19.6376 |
|
337 |
+ 6434.1900 20.8994 |
|
338 |
+ 6434.7440 17.5517 |
|
339 |
+ 6435.2980 17.9134 |
|
340 |
+ 6435.8520 21.1444 |
|
341 |
+ 6436.4060 18.5837 |
|
342 |
+ 6436.9600 20.8869 |
|
343 |
+ 6437.5140 20.1269 |
|
344 |
+ 6438.0680 21.1678 |
|
345 |
+ 6438.6220 20.4201 |
|
346 |
+ 6439.1760 19.1197 |
|
347 |
+ 6439.7300 19.1932 |
|
348 |
+ 6440.2840 19.9368 |
|
349 |
+ 6440.8380 20.1973 |
|
350 |
+ 6441.3920 21.2910 |
|
351 |
+ 6441.9460 19.6138 |
|
352 |
+ 6442.5000 20.1451 |
|
353 |
+ 6443.0540 19.7426 |
|
354 |
+ 6443.6080 19.9238 |
|
355 |
+ 6444.1620 20.4573 |
|
356 |
+ 6444.7160 19.7036 |
|
357 |
+ 6445.2700 18.5351 |
|
358 |
+ 6445.8240 19.7359 |
|
359 |
+ 6446.3780 19.8491 |
|
360 |
+ 6446.9320 20.7861 |
|
361 |
+ 6447.4860 22.0220 |
|
362 |
+ 6448.0400 19.3191 |
|
363 |
+ 6448.5940 19.4570 |
|
364 |
+ 6449.1480 19.4546 |
|
365 |
+ 6449.7020 18.7902 |
|
366 |
+ 6450.2560 19.0337 |
|
367 |
+ 6450.8100 19.7706 |
|
368 |
+ 6451.3640 20.4381 |
|
369 |
+ 6451.9180 20.5747 |
|
370 |
+ 6452.4720 19.0581 |
|
371 |
+ 6453.0260 19.5739 |
|
372 |
+ 6453.5800 20.1833 |
|
373 |
+ 6454.1340 18.5490 |
|
374 |
+ 6454.6880 19.9595 |
|
375 |
+ 6455.2420 20.5207 |
|
376 |
+ 6455.7960 19.3244 |
|
377 |
+ 6456.3500 18.6483 |
|
378 |
+ 6456.9040 19.7354 |
|
379 |
+ 6457.4580 19.4414 |
|
380 |
+ 6458.0120 19.6636 |
|
381 |
+ 6458.5660 18.1859 |
|
382 |
+ 6459.1200 18.8838 |
|
383 |
+ 6459.6740 18.7148 |
|
384 |
+ 6460.2280 19.4150 |
|
385 |
+ 6460.7820 19.4203 |
|
386 |
+ 6461.3360 20.7793 |
|
387 |
+ 6461.8900 21.0711 |
|
388 |
+ 6462.4440 19.2714 |
|
389 |
+ 6462.9980 20.3183 |
|
390 |
+ 6463.5520 20.1991 |
|
391 |
+ 6464.1060 19.2642 |
|
392 |
+ 6464.6600 19.5939 |
|
393 |
+ 6465.2140 20.5366 |
|
394 |
+ 6465.7680 19.9005 |
|
395 |
+ 6466.3220 19.7264 |
|
396 |
+ 6466.8760 19.5644 |
|
397 |
+ 6467.4300 19.6285 |
|
398 |
+ 6467.9840 19.7406 |
|
399 |
+ 6468.5380 18.9328 |
|
400 |
+ 6469.0920 20.1133 |
|
401 |
+ 6469.6460 20.0485 |
|
402 |
+ 6470.2000 19.1371 |
|
403 |
+ 6470.7540 18.9930 |
|
404 |
+ 6471.3080 19.5754 |
|
405 |
+ 6471.8620 19.3754 |
|
406 |
+ 6472.4160 19.2887 |
|
407 |
+ 6472.9700 19.8068 |
|
408 |
+ 6473.5240 19.2577 |
|
409 |
+ 6474.0780 18.5806 |
|
410 |
+ 6474.6320 19.8234 |
|
411 |
+ 6475.1860 20.2020 |
|
412 |
+ 6475.7400 19.6858 |
|
413 |
+ 6476.2940 19.2899 |
|
414 |
+ 6476.8480 20.2259 |
|
415 |
+ 6477.4020 20.2585 |
|
416 |
+ 6477.9560 20.8226 |
|
417 |
+ 6478.5100 18.8833 |
|
418 |
+ 6479.0640 16.9565 |
|
419 |
+ 6479.6180 17.4281 |
|
420 |
+ 6480.1720 18.7420 |
|
421 |
+ 6480.7260 20.4770 |
|
422 |
+ 6481.2800 20.6345 |
|
423 |
+ 6481.8340 19.8184 |
|
424 |
+ 6482.3880 20.5903 |
|
425 |
+ 6482.9420 20.7109 |
|
426 |
+ 6483.4960 20.3396 |
|
427 |
+ 6484.0500 19.7796 |
|
428 |
+ 6484.6040 19.0464 |
|
429 |
+ 6485.1580 18.4396 |
|
430 |
+ 6485.7120 17.3707 |
|
431 |
+ 6486.2660 17.4104 |
|
432 |
+ 6486.8200 18.5430 |
|
433 |
+ 6487.3740 20.3525 |
|
434 |
+ 6487.9280 19.9713 |
|
435 |
+ 6488.4820 18.5401 |
|
436 |
+ 6489.0360 18.6629 |
|
437 |
+ 6489.5900 20.0296 |
|
438 |
+ 6490.1440 19.1001 |
|
439 |
+ 6490.6980 18.0039 |
|
440 |
+ 6491.2520 20.3629 |
|
441 |
+ 6491.8060 20.7241 |
|
442 |
+ 6492.3600 19.3060 |
|
443 |
+ 6492.9140 19.1011 |
|
444 |
+ 6493.4680 19.1001 |
|
445 |
+ 6494.0220 19.9910 |
|
446 |
+ 6494.5760 20.8003 |
|
447 |
+ 6495.1300 20.5146 |
|
448 |
+ 6495.6840 19.3671 |
|
449 |
+ 6496.2380 19.3087 |
|
450 |
+ 6496.7920 19.5976 |
|
451 |
+ 6497.3460 17.1439 |
|
452 |
+ 6497.9000 16.6859 |
|
453 |
+ 6498.4540 18.3108 |
|
454 |
+ 6499.0080 19.7231 |
|
455 |
+ 6499.5620 19.8253 |
|
456 |
+ 6500.1160 20.4994 |
|
457 |
+ 6500.6700 20.6713 |
|
458 |
+ 6501.2240 20.4268 |
|
459 |
+ 6501.7780 20.1723 |
|
460 |
+ 6502.3320 20.2873 |
|
461 |
+ 6502.8860 21.0014 |
|
462 |
+ 6503.4400 21.9179 |
|
463 |
+ 6503.9940 20.7388 |
|
464 |
+ 6504.5480 19.5961 |
|
465 |
+ 6505.1020 21.8973 |
|
466 |
+ 6505.6560 21.4722 |
|
467 |
+ 6506.2100 20.4203 |
|
468 |
+ 6506.7640 21.1310 |
|
469 |
+ 6507.3180 20.0532 |
|
470 |
+ 6507.8720 19.5319 |
|
471 |
+ 6508.4260 20.0422 |
|
472 |
+ 6508.9800 20.1316 |
|
473 |
+ 6509.5340 20.4387 |
|
474 |
+ 6510.0880 21.0395 |
|
475 |
+ 6510.6420 20.5248 |
|
476 |
+ 6511.1960 21.4537 |
|
477 |
+ 6511.7500 20.2382 |
|
478 |
+ 6512.3040 19.9861 |
|
479 |
+ 6512.8580 20.4104 |
|
480 |
+ 6513.4120 21.1839 |
|
481 |
+ 6513.9660 21.2309 |
|
482 |
+ 6514.5200 20.5409 |
|
483 |
+ 6515.0740 20.5971 |
|
484 |
+ 6515.6280 20.5917 |
|
485 |
+ 6516.1820 19.9272 |
|
486 |
+ 6516.7360 19.3515 |
|
487 |
+ 6517.2900 21.8094 |
|
488 |
+ 6517.8440 20.3250 |
|
489 |
+ 6518.3980 19.4079 |
|
490 |
+ 6518.9520 20.2948 |
|
491 |
+ 6519.5060 21.8275 |
|
492 |
+ 6520.0600 20.6900 |
|
493 |
+ 6520.6140 20.3956 |
|
494 |
+ 6521.1680 21.4746 |
|
495 |
+ 6521.7220 19.8163 |
|
496 |
+ 6522.2760 19.7471 |
|
497 |
+ 6522.8300 21.0215 |
|
498 |
+ 6523.3840 20.0798 |
|
499 |
+ 6523.9380 19.8207 |
|
500 |
+ 6524.4920 21.2896 |
|
501 |
+ 6525.0460 19.3720 |
|
502 |
+ 6525.6000 20.8146 |
|
503 |
+ 6526.1540 19.2791 |
|
504 |
+ 6526.7080 20.4548 |
|
505 |
+ 6527.2620 18.4258 |
|
506 |
+ 6527.8160 18.3268 |
|
507 |
+ 6528.3700 19.3503 |
|
508 |
+ 6528.9240 21.0856 |
|
509 |
+ 6529.4780 18.1434 |
|
510 |
+ 6530.0320 18.5880 |
|
511 |
+ 6530.5860 18.0368 |
|
512 |
+ 6531.1400 16.8475 |
|
513 |
+ 6531.6940 18.1456 |
|
514 |
+ 6532.2480 18.1349 |
|
515 |
+ 6532.8020 18.5337 |
|
516 |
+ 6533.3560 17.6984 |
|
517 |
+ 6533.9100 18.6612 |
|
518 |
+ 6534.4640 19.1887 |
|
519 |
+ 6535.0180 19.8609 |
|
520 |
+ 6535.5720 19.2619 |
|
521 |
+ 6536.1260 18.4209 |
|
522 |
+ 6536.6800 17.6579 |
|
523 |
+ 6537.2340 19.9940 |
|
524 |
+ 6537.7880 17.7102 |
|
525 |
+ 6538.3420 19.7276 |
|
526 |
+ 6538.8960 18.6907 |
|
527 |
+ 6539.4500 19.2168 |
|
528 |
+ 6540.0040 21.4948 |
|
529 |
+ 6540.5580 21.0503 |
|
530 |
+ 6541.1120 18.6240 |
|
531 |
+ 6541.6660 21.5506 |
|
532 |
+ 6542.2200 19.1411 |
|
533 |
+ 6542.7740 20.3340 |
|
534 |
+ 6543.3280 19.0112 |
|
535 |
+ 6543.8820 20.4616 |
|
536 |
+ 6544.4360 17.3566 |
|
537 |
+ 6544.9900 19.0455 |
|
538 |
+ 6545.5440 19.6785 |
|
539 |
+ 6546.0980 21.2090 |
|
540 |
+ 6546.6520 20.5227 |
|
541 |
+ 6547.2060 20.0974 |
|
542 |
+ 6547.7600 19.9369 |
|
543 |
+ 6548.3140 18.8975 |
|
544 |
+ 6548.8680 21.2557 |
|
545 |
+ 6549.4220 17.3551 |
|
546 |
+ 6549.9760 20.3647 |
|
547 |
+ 6550.5300 20.8568 |
|
548 |
+ 6551.0840 19.4628 |
|
549 |
+ 6551.6380 19.8924 |
|
550 |
+ 6552.1920 18.6387 |
|
551 |
+ 6552.7460 19.8774 |
|
552 |
+ 6553.3000 21.1110 |
|
553 |
+ 6553.8540 17.1980 |
|
554 |
+ 6554.4080 20.9541 |
|
555 |
+ 6554.9620 22.6632 |
|
556 |
+ 6555.5160 19.8164 |
|
557 |
+ 6556.0700 20.5334 |
|
558 |
+ 6556.6240 21.0241 |
|
559 |
+ 6557.1780 21.4203 |
|
560 |
+ 6557.7320 22.3708 |
|
561 |
+ 6558.2860 23.2339 |
|
562 |
+ 6558.8400 21.6285 |
|
563 |
+ 6559.3940 21.4539 |
|
564 |
+ 6559.9480 20.4885 |
|
565 |
+ 6560.5020 20.5943 |
|
566 |
+ 6561.0560 20.3349 |
|
567 |
+ 6561.6100 18.7316 |
|
568 |
+ 6562.1640 19.5434 |
|
569 |
+ 6562.7180 19.9610 |
|
570 |
+ 6563.2720 18.6941 |
|
571 |
+ 6563.8260 19.1814 |
|
572 |
+ 6564.3800 18.8340 |
|
573 |
+ 6564.9340 19.6391 |
|
574 |
+ 6565.4880 18.9640 |
|
575 |
+ 6566.0420 20.4038 |
|
576 |
+ 6566.5960 20.6336 |
|
577 |
+ 6567.1500 19.1907 |
|
578 |
+ 6567.7040 19.1191 |
|
579 |
+ 6568.2580 19.5066 |
|
580 |
+ 6568.8120 20.5585 |
|
581 |
+ 6569.3660 20.9814 |
|
582 |
+ 6569.9200 20.8646 |
|
583 |
+ 6570.4740 19.6008 |
|
584 |
+ 6571.0280 20.1055 |
|
585 |
+ 6571.5820 20.8478 |
|
586 |
+ 6572.1360 21.4340 |
|
587 |
+ 6572.6900 21.0763 |
|
588 |
+ 6573.2440 21.0281 |
|
589 |
+ 6573.7980 20.0633 |
|
590 |
+ 6574.3520 21.6055 |
|
591 |
+ 6574.9060 22.0496 |
|
592 |
+ 6575.4600 22.5150 |
|
593 |
+ 6576.0140 23.2025 |
|
594 |
+ 6576.5680 25.0891 |
|
595 |
+ 6577.1220 25.5392 |
|
596 |
+ 6577.6760 25.6677 |
|
597 |
+ 6578.2300 24.7705 |
|
598 |
+ 6578.7840 24.6712 |
|
599 |
+ 6579.3380 26.5970 |
|
600 |
+ 6579.8920 27.7217 |
|
601 |
+ 6580.4460 29.8677 |
|
602 |
+ 6581.0000 31.6401 |
|
603 |
+ 6581.5540 36.2007 |
|
604 |
+ 6582.1080 39.5042 |
|
605 |
+ 6582.6620 45.1931 |
|
606 |
+ 6583.2160 52.1273 |
|
607 |
+ 6583.7700 59.4507 |
|
608 |
+ 6584.3240 67.3330 |
|
609 |
+ 6584.8780 66.2447 |
|
610 |
+ 6585.4320 58.1841 |
|
611 |
+ 6585.9860 51.0285 |
|
612 |
+ 6586.5400 42.0325 |
|
613 |
+ 6587.0940 33.9296 |
|
614 |
+ 6587.6480 29.6038 |
|
615 |
+ 6588.2020 27.0463 |
|
616 |
+ 6588.7560 26.2361 |
|
617 |
+ 6589.3100 23.4578 |
|
618 |
+ 6589.8640 23.5562 |
|
619 |
+ 6590.4180 24.9060 |
|
620 |
+ 6590.9720 24.4400 |
|
621 |
+ 6591.5260 23.7210 |
|
622 |
+ 6592.0800 24.1002 |
|
623 |
+ 6592.6340 25.8813 |
|
624 |
+ 6593.1880 28.7411 |
|
625 |
+ 6593.7420 31.1462 |
|
626 |
+ 6594.2960 34.5940 |
|
627 |
+ 6594.8500 38.2738 |
|
628 |
+ 6595.4040 44.2407 |
|
629 |
+ 6595.9580 55.9275 |
|
630 |
+ 6596.5120 67.3132 |
|
631 |
+ 6597.0660 82.0715 |
|
632 |
+ 6597.6200 104.158 |
|
633 |
+ 6598.1740 130.759 |
|
634 |
+ 6598.7280 154.839 |
|
635 |
+ 6599.2820 166.689 |
|
636 |
+ 6599.8360 144.946 |
|
637 |
+ 6600.3900 122.120 |
|
638 |
+ 6600.9440 95.8310 |
|
639 |
+ 6601.4980 64.1135 |
|
640 |
+ 6602.0520 48.4300 |
|
641 |
+ 6602.6060 39.5269 |
|
642 |
+ 6603.1600 34.2148 |
|
643 |
+ 6603.7140 30.0838 |
|
644 |
+ 6604.2680 25.7155 |
|
645 |
+ 6604.8220 23.7614 |
|
646 |
+ 6605.3760 23.3404 |
|
647 |
+ 6605.9300 23.7890 |
|
648 |
+ 6606.4840 23.7415 |
|
649 |
+ 6607.0380 23.6208 |
|
650 |
+ 6607.5920 23.6858 |
|
651 |
+ 6608.1460 23.1684 |
|
652 |
+ 6608.7000 23.5296 |
|
653 |
+ 6609.2540 24.2691 |
|
654 |
+ 6609.8080 25.1316 |
|
655 |
+ 6610.3620 25.1295 |
|
656 |
+ 6610.9160 24.3198 |
|
657 |
+ 6611.4700 24.5262 |
|
658 |
+ 6612.0240 24.9355 |
|
659 |
+ 6612.5780 25.8981 |
|
660 |
+ 6613.1320 29.1776 |
|
661 |
+ 6613.6860 32.9874 |
|
662 |
+ 6614.2400 34.5587 |
|
663 |
+ 6614.7940 36.4524 |
|
664 |
+ 6615.3480 42.3573 |
|
665 |
+ 6615.9020 48.0832 |
|
666 |
+ 6616.4560 54.5850 |
|
667 |
+ 6617.0100 65.3569 |
|
668 |
+ 6617.5640 76.9998 |
|
669 |
+ 6618.1180 93.8837 |
|
670 |
+ 6618.6720 116.844 |
|
671 |
+ 6619.2260 137.523 |
|
672 |
+ 6619.7800 152.852 |
|
673 |
+ 6620.3340 161.448 |
|
674 |
+ 6620.8880 152.001 |
|
675 |
+ 6621.4420 118.938 |
|
676 |
+ 6621.9960 82.2067 |
|
677 |
+ 6622.5500 58.2807 |
|
678 |
+ 6623.1040 44.6812 |
|
679 |
+ 6623.6580 34.3301 |
|
680 |
+ 6624.2120 29.1157 |
|
681 |
+ 6624.7660 28.1992 |
|
682 |
+ 6625.3200 26.6171 |
|
683 |
+ 6625.8740 24.3425 |
|
684 |
+ 6626.4280 24.2991 |
|
685 |
+ 6626.9820 24.0765 |
|
686 |
+ 6627.5360 21.8737 |
|
687 |
+ 6628.0900 20.7832 |
|
688 |
+ 6628.6440 21.9380 |
|
689 |
+ 6629.1980 20.7688 |
|
690 |
+ 6629.7520 19.6957 |
|
691 |
+ 6630.3060 19.2478 |
|
692 |
+ 6630.8600 18.6033 |
|
693 |
+ 6631.4140 19.9453 |
|
694 |
+ 6631.9680 20.3755 |
|
695 |
+ 6632.5220 19.7011 |
|
696 |
+ 6633.0760 19.4732 |
|
697 |
+ 6633.6300 19.4947 |
|
698 |
+ 6634.1840 20.9534 |
|
699 |
+ 6634.7380 20.5470 |
|
700 |
+ 6635.2920 19.3099 |
|
701 |
+ 6635.8460 20.5670 |
|
702 |
+ 6636.4000 20.3986 |
|
703 |
+ 6636.9540 19.6587 |
|
704 |
+ 6637.5080 18.9457 |
|
705 |
+ 6638.0620 19.1586 |
|
706 |
+ 6638.6160 19.9326 |
|
707 |
+ 6639.1700 20.3277 |
|
708 |
+ 6639.7240 19.4582 |
|
709 |
+ 6640.2780 20.6160 |
|
710 |
+ 6640.8320 21.1014 |
|
711 |
+ 6641.3860 19.7347 |
|
712 |
+ 6641.9400 21.4853 |
|
713 |
+ 6642.4940 21.4933 |
|
714 |
+ 6643.0480 20.7241 |
|
715 |
+ 6643.6020 20.8845 |
|
716 |
+ 6644.1560 20.6209 |
|
717 |
+ 6644.7100 20.6115 |
|
718 |
+ 6645.2640 19.4499 |
|
719 |
+ 6645.8180 20.5414 |
|
720 |
+ 6646.3720 21.0062 |
|
721 |
+ 6646.9260 19.7883 |
|
722 |
+ 6647.4800 18.3220 |
|
723 |
+ 6648.0340 19.3579 |
|
724 |
+ 6648.5880 19.5905 |
|
725 |
+ 6649.1420 20.6075 |
|
726 |
+ 6649.6960 18.8132 |
|
727 |
+ 6650.2500 17.6117 |
|
728 |
+ 6650.8040 21.4534 |
|
729 |
+ 6651.3580 20.9789 |
|
730 |
+ 6651.9120 20.1589 |
|
731 |
+ 6652.4660 20.2961 |
|
732 |
+ 6653.0200 19.4876 |
|
733 |
+ 6653.5740 19.8435 |
|
734 |
+ 6654.1280 20.8248 |
|
735 |
+ 6654.6820 20.5742 |
|
736 |
+ 6655.2360 19.3550 |
|
737 |
+ 6655.7900 19.4507 |
|
738 |
+ 6656.3440 19.9566 |
|
739 |
+ 6656.8980 19.1757 |
|
740 |
+ 6657.4520 20.5401 |
|
741 |
+ 6658.0060 22.4129 |
|
742 |
+ 6658.5600 20.8692 |
|
743 |
+ 6659.1140 20.8352 |
|
744 |
+ 6659.6680 20.4446 |
|
745 |
+ 6660.2220 20.8682 |
|
746 |
+ 6660.7760 19.2264 |
|
747 |
+ 6661.3300 19.4142 |
|
748 |
+ 6661.8840 19.2252 |
|
749 |
+ 6662.4380 18.8023 |
|
750 |
+ 6662.9920 19.6633 |
|
751 |
+ 6663.5460 20.3500 |
|
752 |
+ 6664.1000 19.6079 |
|
753 |
+ 6664.6540 20.3009 |
|
754 |
+ 6665.2080 19.6269 |
|
755 |
+ 6665.7620 21.9497 |
|
756 |
+ 6666.3160 20.5701 |
|
757 |
+ 6666.8700 19.2821 |
|
758 |
+ 6667.4240 19.0143 |
|
759 |
+ 6667.9780 19.5594 |
|
760 |
+ 6668.5320 20.3786 |
|
761 |
+ 6669.0860 19.7933 |
|
762 |
+ 6669.6400 20.0205 |
|
763 |
+ 6670.1940 18.6706 |
|
764 |
+ 6670.7480 18.8540 |
|
765 |
+ 6671.3020 20.0066 |
|
766 |
+ 6671.8560 19.9728 |
|
767 |
+ 6672.4100 19.2545 |
|
768 |
+ 6672.9640 20.1626 |
|
769 |
+ 6673.5180 18.6990 |
|
770 |
+ 6674.0720 19.5303 |
|
771 |
+ 6674.6260 19.7407 |
|
772 |
+ 6675.1800 20.8232 |
|
773 |
+ 6675.7340 22.6179 |
|
774 |
+ 6676.2880 20.3008 |
|
775 |
+ 6676.8420 19.3083 |
|
776 |
+ 6677.3960 20.9807 |
|
777 |
+ 6677.9500 20.5947 |
|
778 |
+ 6678.5040 18.5498 |
|
779 |
+ 6679.0580 19.0943 |
|
780 |
+ 6679.6120 21.3645 |
|
781 |
+ 6680.1660 19.9647 |
|
782 |
+ 6680.7200 18.1677 |
|
783 |
+ 6681.2740 17.3911 |
|
784 |
+ 6681.8280 19.9894 |
|
785 |
+ 6682.3820 17.9086 |
|
786 |
+ 6682.9360 19.1081 |
|
787 |
+ 6683.4900 18.8703 |
|
788 |
+ 6684.0440 18.8569 |
|
789 |
+ 6684.5980 22.0491 |
|
790 |
+ 6685.1520 19.2424 |
|
791 |
+ 6685.7060 20.0554 |
|
792 |
+ 6686.2600 20.1510 |
|
793 |
+ 6686.8140 19.0480 |
|
794 |
+ 6687.3680 20.5827 |
|
795 |
+ 6687.9220 19.7750 |
|
796 |
+ 6688.4760 20.3948 |
|
797 |
+ 6689.0300 19.0764 |
|
798 |
+ 6689.5840 17.6081 |
|
799 |
+ 6690.1380 19.9236 |
|
800 |
+ 6690.6920 20.3151 |
|
801 |
+ 6691.2460 19.8926 |
|
802 |
+ 6691.8000 19.0738 |
|
803 |
+ 6692.3540 19.7650 |
|
804 |
+ 6692.9080 20.5196 |
|
805 |
+ 6693.4620 21.1427 |
|
806 |
+ 6694.0160 18.8082 |
|
807 |
+ 6694.5700 19.8406 |
|
808 |
+ 6695.1240 21.0289 |
|
809 |
+ 6695.6780 19.7923 |
|
810 |
+ 6696.2320 18.9540 |
|
811 |
+ 6696.7860 17.8256 |
|
812 |
+ 6697.3400 18.6686 |
|
813 |
+ 6697.8940 18.6286 |
|
814 |
+ 6698.4480 19.8510 |
|
815 |
+ 6699.0020 17.6020 |
|
816 |
+ 6699.5560 18.4082 |
|
817 |
+ 6700.1100 18.5649 |
|
818 |
+ 6700.6640 18.1578 |
|
819 |
+ 6701.2180 18.5283 |
|
820 |
+ 6701.7720 18.0017 |
|
821 |
+ 6702.3260 19.8825 |
|
822 |
+ 6702.8800 18.1138 |
|
823 |
+ 6703.4340 19.1790 |
|
824 |
+ 6703.9880 19.4695 |
|
825 |
+ 6704.5420 20.1022 |
|
826 |
+ 6705.0960 19.7503 |
|
827 |
+ 6705.6500 19.4556 |
|
828 |
+ 6706.2040 19.0063 |
|
829 |
+ 6706.7580 19.2346 |
|
830 |
+ 6707.3120 19.7346 |
|
831 |
+ 6707.8660 19.7955 |
|
832 |
+ 6708.4200 20.3739 |
|
833 |
+ 6708.9740 20.2788 |
|
834 |
+ 6709.5280 19.4209 |
|
835 |
+ 6710.0820 19.5952 |
|
836 |
+ 6710.6360 18.3127 |
|
837 |
+ 6711.1900 19.4116 |
|
838 |
+ 6711.7440 20.1447 |
|
839 |
+ 6712.2980 17.1444 |
|
840 |
+ 6712.8520 20.8219 |
|
841 |
+ 6713.4060 19.3216 |
|
842 |
+ 6713.9600 19.4712 |
|
843 |
+ 6714.5140 21.7114 |
|
844 |
+ 6715.0680 20.6351 |
|
845 |
+ 6715.6220 19.5372 |
|
846 |
+ 6716.1760 20.8066 |
|
847 |
+ 6716.7300 19.6911 |
|
848 |
+ 6717.2840 19.1860 |
|
849 |
+ 6717.8380 19.2569 |
|
850 |
+ 6718.3920 19.4478 |
|
851 |
+ 6718.9460 19.8728 |
|
852 |
+ 6719.5000 19.8443 |
|
853 |
+ 6720.0540 20.1460 |
|
854 |
+ 6720.6080 19.3576 |
|
855 |
+ 6721.1620 20.3845 |
|
856 |
+ 6721.7160 20.2068 |
|
857 |
+ 6722.2700 20.7287 |
|
858 |
+ 6722.8240 19.6896 |
|
859 |
+ 6723.3780 18.3578 |
|
860 |
+ 6723.9320 19.3693 |
|
861 |
+ 6724.4860 18.9992 |
|
862 |
+ 6725.0400 18.1613 |
|
863 |
+ 6725.5940 20.6043 |
|
864 |
+ 6726.1480 21.0316 |
|
865 |
+ 6726.7020 20.5277 |
|
866 |
+ 6727.2560 21.8013 |
|
867 |
+ 6727.8100 19.7795 |
|
868 |
+ 6728.3640 20.9107 |
|
869 |
+ 6728.9180 20.3970 |
|
870 |
+ 6729.4720 19.4869 |
|
871 |
+ 6730.0260 20.1869 |
|
872 |
+ 6730.5800 19.4323 |
|
873 |
+ 6731.1340 18.8834 |
|
874 |
+ 6731.6880 19.3356 |
|
875 |
+ 6732.2420 18.7087 |
|
876 |
+ 6732.7960 19.4827 |
|
877 |
+ 6733.3500 21.1118 |
|
878 |
+ 6733.9040 20.9485 |
|
879 |
+ 6734.4580 20.8602 |
|
880 |
+ 6735.0120 20.8539 |
|
881 |
+ 6735.5660 21.1124 |
|
882 |
+ 6736.1200 21.3894 |
|
883 |
+ 6736.6740 21.0573 |
|
884 |
+ 6737.2280 20.9166 |
|
885 |
+ 6737.7820 19.5911 |
|
886 |
+ 6738.3360 20.2924 |
|
887 |
+ 6738.8900 19.5895 |
|
888 |
+ 6739.4440 21.1529 |
|
889 |
+ 6739.9980 20.8831 |
|
890 |
+ 6740.5520 20.0236 |
|
891 |
+ 6741.1060 21.2298 |
|
892 |
+ 6741.6600 21.0492 |
|
893 |
+ 6742.2140 22.0070 |
|
894 |
+ 6742.7680 21.4358 |
|
895 |
+ 6743.3220 20.4420 |
|
896 |
+ 6743.8760 18.9136 |
|
897 |
+ 6744.4300 21.6202 |
|
898 |
+ 6744.9840 20.4650 |
|
899 |
+ 6745.5380 20.6454 |
|
900 |
+ 6746.0920 21.0727 |
|
901 |
+ 6746.6460 20.6895 |
|
902 |
+ 6747.2000 22.2061 |
|
903 |
+ 6747.7540 22.2918 |
|
904 |
+ 6748.3080 22.3728 |
|
905 |
+ 6748.8620 23.8036 |
|
906 |
+ 6749.4160 23.3103 |
|
907 |
+ 6749.9700 23.7450 |
|
908 |
+ 6750.5240 26.5682 |
|
909 |
+ 6751.0780 27.6973 |
|
910 |
+ 6751.6320 30.8140 |
|
911 |
+ 6752.1860 33.2592 |
|
912 |
+ 6752.7400 36.0206 |
|
913 |
+ 6753.2940 39.0239 |
|
914 |
+ 6753.8480 37.2524 |
|
915 |
+ 6754.4020 34.5739 |
|
916 |
+ 6754.9560 31.1382 |
|
917 |
+ 6755.5100 28.5667 |
|
918 |
+ 6756.0640 24.8606 |
|
919 |
+ 6756.6180 24.3483 |
|
920 |
+ 6757.1720 21.5713 |
|
921 |
+ 6757.7260 23.7640 |
|
922 |
+ 6758.2800 21.7487 |
|
923 |
+ 6758.8340 21.2566 |
|
924 |
+ 6759.3880 21.7451 |
|
925 |
+ 6759.9420 21.6718 |
|
926 |
+ 6760.4960 21.8084 |
|
927 |
+ 6761.0500 21.4460 |
|
928 |
+ 6761.6040 22.7694 |
|
929 |
+ 6762.1580 21.7641 |
|
930 |
+ 6762.7120 22.9700 |
|
931 |
+ 6763.2660 23.8768 |
|
932 |
+ 6763.8200 22.7537 |
|
933 |
+ 6764.3740 25.4592 |
|
934 |
+ 6764.9280 28.1632 |
|
935 |
+ 6765.4820 30.2257 |
|
936 |
+ 6766.0360 32.4609 |
|
937 |
+ 6766.5900 35.5991 |
|
938 |
+ 6767.1440 40.7722 |
|
939 |
+ 6767.6980 43.5496 |
|
940 |
+ 6768.2520 45.4351 |
|
941 |
+ 6768.8060 40.7874 |
|
942 |
+ 6769.3600 37.7164 |
|
943 |
+ 6769.9140 31.4194 |
|
944 |
+ 6770.4680 26.5626 |
|
945 |
+ 6771.0220 24.8850 |
|
946 |
+ 6771.5760 21.9932 |
|
947 |
+ 6772.1300 21.5798 |
|
948 |
+ 6772.6840 20.9439 |
|
949 |
+ 6773.2380 19.7670 |
|
950 |
+ 6773.7920 21.0333 |
|
951 |
+ 6774.3460 20.8703 |
|
952 |
+ 6774.9000 21.6122 |
|
953 |
+ 6775.4540 19.2450 |
|
954 |
+ 6776.0080 19.9100 |
|
955 |
+ 6776.5620 18.6992 |
|
956 |
+ 6777.1160 18.7935 |
|
957 |
+ 6777.6700 19.7032 |
|
958 |
+ 6778.2240 20.5730 |
|
959 |
+ 6778.7780 19.5226 |
|
960 |
+ 6779.3320 18.7790 |
|
961 |
+ 6779.8860 18.7053 |
|
962 |
+ 6780.4400 18.4863 |
|
963 |
+ 6780.9940 19.1434 |
|
964 |
+ 6781.5480 16.3791 |
|
965 |
+ 6782.1020 16.7204 |
|
966 |
+ 6782.6560 18.0721 |
|
967 |
+ 6783.2100 18.0712 |
|
968 |
+ 6783.7640 18.8048 |
|
969 |
+ 6784.3180 18.1767 |
|
970 |
+ 6784.8720 19.2046 |
|
971 |
+ 6785.4260 20.3328 |
|
972 |
+ 6785.9800 20.6915 |
|
973 |
+ 6786.5340 19.4404 |
|
974 |
+ 6787.0880 19.6642 |
|
975 |
+ 6787.6420 19.5783 |
|
976 |
+ 6788.1960 18.9902 |
|
977 |
+ 6788.7500 18.2599 |
|
978 |
+ 6789.3040 18.8512 |
|
979 |
+ 6789.8580 18.5336 |
|
980 |
+ 6790.4120 17.6636 |
|
981 |
+ 6790.9660 18.3255 |
|
982 |
+ 6791.5200 20.0259 |
|
983 |
+ 6792.0740 19.0938 |
|
984 |
+ 6792.6280 19.4149 |
|
985 |
+ 6793.1820 19.2219 |
|
986 |
+ 6793.7360 20.4679 |
|
987 |
+ 6794.2900 21.1455 |
|
988 |
+ 6794.8440 19.5279 |
|
989 |
+ 6795.3980 18.7935 |
|
990 |
+ 6795.9520 20.5456 |
|
991 |
+ 6796.5060 20.0350 |
|
992 |
+ 6797.0600 18.9582 |
|
993 |
+ 6797.6140 19.6174 |
|
994 |
+ 6798.1680 20.3751 |
|
995 |
+ 6798.7220 19.9874 |
|
996 |
+ 6799.2760 18.3562 |
|
997 |
+ 6799.8300 19.5166 |
|
998 |
+ 6800.3840 20.2143 |
|
999 |
+ 6800.9380 19.6551 |
|
1000 |
+ 6801.4920 19.0767 |
|
1001 |
+ 6802.0460 18.7790 |
|
1002 |
+ 6802.6000 20.3401 |
|
1003 |
+ 6803.1540 21.5462 |
|
1004 |
+ 6803.7080 19.9388 |
|
1005 |
+ 6804.2620 18.4681 |
|
1006 |
+ 6804.8160 19.9775 |
|
1007 |
+ 6805.3700 19.6801 |
|
1008 |
+ 6805.9240 19.0773 |
|
1009 |
+ 6806.4780 18.8479 |
|
1010 |
+ 6807.0320 18.4472 |
|
1011 |
+ 6807.5860 19.4451 |
|
1012 |
+ 6808.1400 18.3430 |
|
1013 |
+ 6808.6940 18.4687 |
|
1014 |
+ 6809.2480 18.8832 |
|
1015 |
+ 6809.8020 19.7252 |
|
1016 |
+ 6810.3560 19.8735 |
|
1017 |
+ 6810.9100 21.0937 |
|
1018 |
+ 6811.4640 19.6230 |
|
1019 |
+ 6812.0180 18.9942 |
|
1020 |
+ 6812.5720 19.6918 |
|
1021 |
+ 6813.1260 18.9632 |
|
1022 |
+ 6813.6800 19.1040 |
|
1023 |
+ 6814.2340 21.3457 |
|
1024 |
+ 6814.7880 19.3450 |
|
1025 |
+ 6815.3420 18.9928 |
|
1026 |
+ 6815.8960 19.2127 |
|
1027 |
+ 6816.4500 18.4426 |
|
1028 |
+ 6817.0040 18.4924 |
|
1029 |
+ 6817.5580 18.8741 |
|
1030 |
+ 6818.1120 18.1046 |
|
1031 |
+ 6818.6660 19.7911 |
|
1032 |
+ 6819.2200 20.0068 |
|
1033 |
+ 6819.7740 19.5075 |
|
1034 |
+ 6820.3280 20.5297 |
|
1035 |
+ 6820.8820 19.5471 |
|
1036 |
+ 6821.4360 18.3781 |
|
1037 |
+ 6821.9900 18.0614 |
|
1038 |
+ 6822.5440 18.8608 |
|
1039 |
+ 6823.0980 18.6227 |
|
1040 |
+ 6823.6520 18.7572 |
|
1041 |
+ 6824.2060 18.4036 |
|
1042 |
+ 6824.7600 19.0150 |
|
1043 |
+ 6825.3140 19.3986 |
|
1044 |
+ 6825.8680 19.7782 |
|
1045 |
+ 6826.4220 19.7572 |
|
1046 |
+ 6826.9760 18.3128 |
|
1047 |
+ 6827.5300 16.5033 |
|
1048 |
+ 6828.0840 18.4095 |
|
1049 |
+ 6828.6380 19.5098 |
|
1050 |
+ 6829.1920 19.5282 |
|
1051 |
+ 6829.7460 20.7815 |
|
1052 |
+ 6830.3000 19.9678 |
|
1053 |
+ 6830.8540 17.9019 |
|
1054 |
+ 6831.4080 20.7641 |
|
1055 |
+ 6831.9620 19.3701 |
|
1056 |
+ 6832.5160 18.4056 |
|
1057 |
+ 6833.0700 19.1954 |
|
1058 |
+ 6833.6240 19.6086 |
|
1059 |
+ 6834.1780 18.0328 |
|
1060 |
+ 6834.7320 19.1735 |
|
1061 |
+ 6835.2860 18.8388 |
|
1062 |
+ 6835.8400 17.9688 |
|
1063 |
+ 6836.3940 17.8133 |
|
1064 |
+ 6836.9480 20.3226 |
|
1065 |
+ 6837.5020 19.9505 |
|
1066 |
+ 6838.0560 19.7628 |
|
1067 |
+ 6838.6100 18.5026 |
|
1068 |
+ 6839.1640 19.4168 |
|
1069 |
+ 6839.7180 19.0886 |
|
1070 |
+ 6840.2720 19.4950 |
|
1071 |
+ 6840.8260 19.0386 |
|
1072 |
+ 6841.3800 19.3613 |
|
1073 |
+ 6841.9340 20.5760 |
|
1074 |
+ 6842.4880 19.2767 |
|
1075 |
+ 6843.0420 20.2116 |
|
1076 |
+ 6843.5960 19.8021 |
|
1077 |
+ 6844.1500 17.9357 |
|
1078 |
+ 6844.7040 18.4056 |
|
1079 |
+ 6845.2580 18.9235 |
|
1080 |
+ 6845.8120 21.2539 |
|
1081 |
+ 6846.3660 19.1222 |
|
1082 |
+ 6846.9200 19.1116 |
|
1083 |
+ 6847.4740 19.4858 |
|
1084 |
+ 6848.0280 16.9752 |
|
1085 |
+ 6848.5820 20.6931 |
|
1086 |
+ 6849.1360 18.8379 |
|
1087 |
+ 6849.6900 18.3726 |
|
1088 |
+ 6850.2440 17.2251 |
|
1089 |
+ 6850.7980 18.3125 |
|
1090 |
+ 6851.3520 18.8181 |
|
1091 |
+ 6851.9060 19.6145 |
|
1092 |
+ 6852.4600 18.0518 |
|
1093 |
+ 6853.0140 16.4574 |
|
1094 |
+ 6853.5680 16.1572 |
|
1095 |
+ 6854.1220 18.3224 |
|
1096 |
+ 6854.6760 19.9573 |
|
1097 |
+ 6855.2300 19.1848 |
|
1098 |
+ 6855.7840 19.2895 |
|
1099 |
+ 6856.3380 20.0645 |
|
1100 |
+ 6856.8920 20.0335 |
|
1101 |
+ 6857.4460 18.8627 |
|
1102 |
+ 6858.0000 17.7411 |
|
1103 |
+ 6858.5540 19.4334 |
|
1104 |
+ 6859.1080 19.3225 |
|
1105 |
+ 6859.6620 18.8582 |
|
1106 |
+ 6860.2160 18.1860 |
|
1107 |
+ 6860.7700 20.4508 |
|
1108 |
+ 6861.3240 20.7856 |
|
1109 |
+ 6861.8780 20.1865 |
|
1110 |
+ 6862.4320 18.7809 |
|
1111 |
+ 6862.9860 18.9147 |
|
1112 |
+ 6863.5400 20.6800 |
|
1113 |
+ 6864.0940 18.4504 |
|
1114 |
+ 6864.6480 18.6347 |
|
1115 |
+ 6865.2020 24.5428 |
|
1116 |
+ 6865.7560 0.00000 |
|
1117 |
+ 6866.3100 0.00000 |
|
1118 |
+ 6866.8640 0.00000 |
|
1119 |
+ 6867.4180 0.00000 |
|
1120 |
+ 6867.9720 0.00000 |
|
1121 |
+ 6868.5260 0.00000 |
|
1122 |
+ 6869.0800 0.00000 |
|
1123 |
+ 6869.6340 0.00000 |
|
1124 |
+ 6870.1880 0.00000 |
|
1125 |
+ 6870.7420 0.00000 |
|
1126 |
+ 6871.2960 0.00000 |
|
1127 |
+ 6871.8500 0.00000 |
|
1128 |
+ 6872.4040 0.00000 |
|
1129 |
+ 6872.9580 0.00000 |
|
1130 |
+ 6873.5120 0.00000 |
|
1131 |
+ 6874.0660 0.00000 |
|
1132 |
+ 6874.6200 0.00000 |
|
1133 |
+ 6875.1740 0.00000 |
|
1134 |
+ 6875.7280 0.00000 |
|
1135 |
+ 6876.2820 0.00000 |
|
1136 |
+ 6876.8360 0.00000 |
|
1137 |
+ 6877.3900 0.00000 |
|
1138 |
+ 6877.9440 0.00000 |
|
1139 |
+ 6878.4980 0.00000 |
|
1140 |
+ 6879.0520 0.00000 |
|
1141 |
+ 6879.6060 0.00000 |
|
1142 |
+ 6880.1600 0.00000 |
|
1143 |
+ 6880.7140 0.00000 |
|
1144 |
+ 6881.2680 0.00000 |
|
1145 |
+ 6881.8220 0.00000 |
|
1146 |
+ 6882.3760 0.00000 |
|
1147 |
+ 6882.9300 0.00000 |
|
1148 |
+ 6883.4840 0.00000 |
|
1149 |
+ 6884.0380 0.00000 |
|
1150 |
+ 6884.5920 0.00000 |
|
1151 |
+ 6885.1460 0.00000 |
|
1152 |
+ 6885.7000 0.00000 |
|
1153 |
+ 6886.2540 0.00000 |
|
1154 |
+ 6886.8080 0.00000 |
|
1155 |
+ 6887.3620 0.00000 |
|
1156 |
+ 6887.9160 0.00000 |
|
1157 |
+ 6888.4700 0.00000 |
|
1158 |
+ 6889.0240 0.00000 |
|
1159 |
+ 6889.5780 0.00000 |
|
1160 |
+ 6890.1320 0.00000 |
|
1161 |
+ 6890.6860 0.00000 |
|
1162 |
+ 6891.2400 0.00000 |
|
1163 |
+ 6891.7940 0.00000 |
|
1164 |
+ 6892.3480 0.00000 |
|
1165 |
+ 6892.9020 0.00000 |
|
1166 |
+ 6893.4560 0.00000 |
|
1167 |
+ 6894.0100 0.00000 |
|
1168 |
+ 6894.5640 0.00000 |
|
1169 |
+ 6895.1180 0.00000 |
|
1170 |
+ 6895.6720 0.00000 |
|
1171 |
+ 6896.2260 0.00000 |
|
1172 |
+ 6896.7800 0.00000 |
|
1173 |
+ 6897.3340 0.00000 |
|
1174 |
+ 6897.8880 0.00000 |
|
1175 |
+ 6898.4420 0.00000 |
|
1176 |
+ 6898.9960 0.00000 |
|
1177 |
+ 6899.5500 0.00000 |
|
1178 |
+ 6900.1040 0.00000 |
|
1179 |
+ 6900.6580 0.00000 |
|
1180 |
+ 6901.2120 0.00000 |
|
1181 |
+ 6901.7660 0.00000 |
|
1182 |
+ 6902.3200 0.00000 |
|
1183 |
+ 6902.8740 0.00000 |
|
1184 |
+ 6903.4280 0.00000 |
|
1185 |
+ 6903.9820 0.00000 |
|
1186 |
+ 6904.5360 0.00000 |
|
1187 |
+ 6905.0900 0.00000 |
|
1188 |
+ 6905.6440 0.00000 |
|
1189 |
+ 6906.1980 0.00000 |
|
1190 |
+ 6906.7520 0.00000 |
|
1191 |
+ 6907.3060 0.00000 |
|
1192 |
+ 6907.8600 0.00000 |
|
1193 |
+ 6908.4140 0.00000 |
|
1194 |
+ 6908.9680 0.00000 |
|
1195 |
+ 6909.5220 0.00000 |
|
1196 |
+ 6910.0760 0.00000 |
|
1197 |
+ 6910.6300 0.00000 |
|
1198 |
+ 6911.1840 0.00000 |
|
1199 |
+ 6911.7380 0.00000 |
|
1200 |
+ 6912.2920 0.00000 |
|
1201 |
+ 6912.8460 0.00000 |
|
1202 |
+ 6913.4000 0.00000 |
... | ... |
@@ -0,0 +1,18 @@ |
1 |
+#1 |
|
2 |
+spec = read.table("M100_spec.txt",header=FALSE) |
|
3 |
+spec.boolmask = (21 > spec[,2]) & (spec[,2] >17) |
|
4 |
+spec.zero = spec |
|
5 |
+spec.notnull = (spec[,2] != 0) |
|
6 |
+spec.fit <- lm(spec[spec.boolmask,2] ~ spec[spec.boolmask,1]) |
|
7 |
+spec.zero[,2]=(spec[,2])-coef(spec.fit)[1] |
|
8 |
+ |
|
9 |
+#2 |
|
10 |
+y=spec.zero[622:646,2] |
|
11 |
+x=spec.zero[622:646,1] |
|
12 |
+gbin <- cbind(spec.zero[622:646,]) |
|
13 |
+Sigma= var(gbin) |
|
14 |
+mu = apply(gbin,2,mean) |
|
15 |
+gcoeffs <-nls(y~(b/a)*exp(-(x-6599.2820)^2/(2*a**2)),start=list(a=1,b=200), trace=TRUE) |
|
16 |
+yg=(231.24/1.73)*exp(-(x-6599.2820)^2/(2*1.73**2)) |
|
17 |
+plot(spec.zero[spec.notNull,1],spec.zero[spec.notNull,2],'l') |
|
18 |
+lines(x,yg,col='red') |
... | ... |
@@ -0,0 +1,115 @@ |
1 |
+#Exercise 1 |
|
2 |
+#a) |
|
3 |
+#setwd("C:/Users/Studium/Desktop/Statistische Methoden/Sheet 4") |
|
4 |
+input=scan(file = "sn_data_riess.dat", what = list(character(), double(), double(), double()), skip=1, multi.line=FALSE) |
|
5 |
+data=cbind(input[[2]], input[[3]], input[[4]]) |
|
6 |
+data |
|
7 |
+ |
|
8 |
+#b) |
|
9 |
+#Constants |
|
10 |
+H0=72.0 #km/s/Mpc |
|
11 |
+c = 3*10^5 #km/s |
|
12 |
+ |
|
13 |
+ |
|
14 |
+#Hubble's law |
|
15 |
+Hubble=function(z,Omegam) H0*sqrt(Omegam*(1+z)^3+(1.0-Omegam)) |
|
16 |
+ |
|
17 |
+ |
|
18 |
+#H^(-1) |
|
19 |
+Hinv=function(zint,Omegam) 1.0/Hubble(zint,Omegam) |
|
20 |
+ |
|
21 |
+ |
|
22 |
+#Luminosity distance |
|
23 |
+dL=function(z,Omegami){ |
|
24 |
+ dLsol=z |
|
25 |
+ for (i in (1:length(z))){ |
|
26 |
+ zarg=z[i] |
|
27 |
+ I=integrate(Hinv,0.0,zarg,Omegam=Omegami) |
|
28 |
+ dLsol[i] = c*(1+zarg)*I$value |
|
29 |
+ } |
|
30 |
+ return(dLsol) |
|
31 |
+ } |
|
32 |
+ |
|
33 |
+m=function(z, Omegam, M) M + 5*log10(H0 * dL(z, Omegam)) |
|
34 |
+ |
|
35 |
+mag_th=NULL |
|
36 |
+mag_th[186]=1 |
|
37 |
+for (i in (1:186)){ |
|
38 |
+ mag_th[i] = m(data[i,1], 1, data[i,2]) #Omegam = 1 for a flat universe |
|
39 |
+ } |
|
40 |
+ |
|
41 |
+#c) |
|
42 |
+chisquare=function(Omegam, M) { |
|
43 |
+ chisqu=0 |
|
44 |
+ for (i in (1:186)){ |
|
45 |
+ chisqu=chisqu+(data[i,2] - m(data[i,1], Omegam, M))**2/data[i,3]**2 |
|
46 |
+ } |
|
47 |
+ return(chisqu) |
|
48 |
+} |
|
49 |
+ |
|
50 |
+ |
|
51 |
+#d) |
|
52 |
+#create vectors Omegam und M |
|
53 |
+Omegam_vec=seq(0.0,1.0, by=0.05) |
|
54 |
+M_vec=seq(15.5, 16.6, 0.01) |
|
55 |
+ |
|
56 |
+chisquare_min = chisquare(0,0) #set initial value |
|
57 |
+Omegam_min=0 |
|
58 |
+M_min=0 |
|
59 |
+ |
|
60 |
+#zweifach verschachtelte Schleife f�r Omegam und M |
|
61 |
+ |
|
62 |
+for (i in M_vec){ |
|
63 |
+ for (j in Omegam_vec){ |
|
64 |
+ if (chisquare(j,i) < chisquare_min){ #compare current value with known smallest value |
|
65 |
+ chisquare_min = chisquare(j,i)# set new smallest value |
|
66 |
+ Omegam_min = j |
|
67 |
+ M_min = i |
|
68 |
+ } |
|
69 |
+ } |
|
70 |
+} |
|
71 |
+chisquare_min |
|
72 |
+Omegam_min |
|
73 |
+M_min |
|
74 |
+ |
|
75 |
+#e) |
|
76 |
+posterior = function(Omegam, M){ |
|
77 |
+ p = exp(-0.5*(chisquare(Omegam, M)- chisquare_min)) |
|
78 |
+ return(p) |
|
79 |
+} |
|
80 |
+ |
|
81 |
+#f) |
|
82 |
+Atest=seq(0,1,by = 0.05) |
|
83 |
+Btest=seq(15.5,16.5,by = 0.01) |
|
84 |
+ |
|
85 |
+jmax=length(Atest) |
|
86 |
+kmax=length(Btest) |
|
87 |
+j=1 |
|
88 |
+k=1 |
|
89 |
+ |
|
90 |
+postplot = matrix(nrow=jmax,ncol=kmax) |
|
91 |
+while (j<=jmax){ k=1 |
|
92 |
+ while (k<=kmax) { |
|
93 |
+ postplot[j,k]=posterior(Atest[j],Btest[k]) |
|
94 |
+ k=k+1} |
|
95 |
+ j=j+1} |
|
96 |
+contour(Atest,Btest,postplot,levels=c(1.0,0.8,0.6,0.4,0.2,0.0),drawlabels=FALSE,xlab='Omegam',ylab='M',xlim=c(0,3),ylim=c(0,3)) |
|
97 |
+ |
|
98 |
+#g) |
|
99 |
+pMmarg=function(Mi) {I=integrate(posterior,13.0,18.0,A=Mi) |
|
100 |
+ return(I$value) |
|
101 |
+ } |
|
102 |
+ |
|
103 |
+#h) |
|
104 |
+pMplot=function(Mi) {dumplot=Mi |
|
105 |
+ for (i in (1:length(Mi))) { |
|
106 |
+ Marg=Mi[i]*1.0 |
|
107 |
+ dumplot[i]=pMmarg(Marg) |
|
108 |
+ } |
|
109 |
+ return(dumplot)} |
|
110 |
+ |
|
111 |
+Mplot=seq(0.1,3.0,by = 0.02) |
|
112 |
+ |
|
113 |
+normM=1.0/max(pMplot(Mplot)) |
|
114 |
+plot(Mplot,normM*pMplot(Mplot),type='l',lwd=2,xlab='M',ylab='prob(M|{N_k},I)') |
|
115 |
+ |
... | ... |
@@ -0,0 +1,52 @@ |
1 |
+# EXAMPLE 3: Introduction to Statistics for Astrophysicists |
|
2 |
+# SS 2012 |
|
3 |
+# JOCHEN WELLER |
|
4 |
+ |
|
5 |
+ |
|
6 |
+ |
|
7 |
+ |
|
8 |
+# Sequence of probabilities (Hypothesis) |
|
9 |
+H=seq(0,1,by = 0.01) |
|
10 |
+ |
|
11 |
+# number of trials |
|
12 |
+n=32 |
|
13 |
+ |
|
14 |
+# bias |
|
15 |
+bias=0.25 |
|
16 |
+ |
|
17 |
+# generate random sample with possible outcome 0,1 and bias: toss the (un-)fair coin |
|
18 |
+coin=sample(c(0,1),n,replace=TRUE,c(1.0-bias,bias)) |
|
19 |
+ |
|
20 |
+# |
|
21 |
+ |
|
22 |
+# count heads of sample |
|
23 |
+heads=sum(coin) |
|
24 |
+ |
|
25 |
+ |
|
26 |
+# prior distribution |
|
27 |
+# uniform |
|
28 |
+prior = 1.0 |
|
29 |
+ |
|
30 |
+ |
|
31 |
+#Gaussian approximation |
|
32 |
+H0 = heads/n |
|
33 |
+sigma=sqrt(H0*(1-H0)/n) |
|
34 |
+likeapprox <- function(H) 1.0/sqrt(2.0*pi)/sigma*exp(-0.5*(H-H0)**2/sigma**2) |
|
35 |
+ |
|
36 |
+#calculate normalization of binomial distribution |
|
37 |
+sum = 0.0 |
|
38 |
+i = 0 |
|
39 |
+while (i < n-heads) {sum=sum+choose(n-heads,i)*((-1)^i)/(heads+i+1) |
|
40 |
+ i=i+1 } |
|
41 |
+norm = abs(1.0/sum) |
|
42 |
+ |
|
43 |
+# plot posterior (likelihood times prior) |
|
44 |
+ |
|
45 |
+par(font.lab=2) |
|
46 |
+par(font.axis=2) |
|
47 |
+plot(H,norm*dbinom(heads,n,H)*prior,type='l', xlab='H',ylab='prob(H|{data},I)', lwd=2, main=paste("N=",n)) |
|
48 |
+lines(H,likeapprox(H)*prior,lty=2,lwd=2) |
|
49 |
+abline(v=H0,lty=3,lwd=2,col='blue') |
|
50 |
+abline(v=H0-sigma,lty=3,lwd=2,col='blue') |
|
51 |
+abline(v=H0+sigma,lty=3,lwd=2,col='blue') |
|
52 |
+legend("topright",legend=c("Binomial","Gaussian approximation","maximum, sigma"),lty=c(1,2,3),lwd=c(2,2,2),col=c("black","black","blue")) |
|
0 | 53 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,51 @@ |
1 |
+# EXAMPLE 4: Introduction to Statistics for Astrophysicists |
|
2 |
+# SS 2012 |
|
3 |
+# JOCHEN WELLER |
|
4 |
+ |
|
5 |
+ |
|
6 |
+# The Lighthouse Problem |
|
7 |
+alpha0 = 1 #km true position at coastline |
|
8 |
+beta = 1 #km position out at see |
|
9 |
+ |
|
10 |
+# Sequence of positions (use already prior range from -10 to 10 km) |
|
11 |
+alpha=seq(-10,10,by = 0.05) |
|
12 |
+ |
|
13 |
+# number of trials |
|
14 |
+N=512 |
|
15 |
+ |
|
16 |
+# generate random sample distributed according to a Cauchy distribution (see lecture) |
|
17 |
+# with N trial |
|
18 |
+pos=rcauchy(N,alpha0,beta) |
|
19 |
+ |
|
20 |
+# prior distribution |
|
21 |
+# uniform between -10 and +10 km |
|
22 |
+prior = 1.0/20.0 |
|
23 |
+ |
|
24 |
+sum = 0.0 |
|
25 |
+i = 1 |
|
26 |
+ |
|
27 |
+logpost <- function(alpha) { while (i<=N){sum=sum+log(beta^2+(pos[i]-alpha)^2) |
|
28 |
+ i=i+1 }; sum} |
|
29 |
+ |
|
30 |
+#find minimum of log likelihood |
|
31 |
+lmin=min(logpost(alpha)) |
|
32 |
+ |
|
33 |
+# normalized posterior |
|
34 |
+post <- function(alpha) exp(-logpost(alpha)+lmin) |
|
35 |
+ |
|
36 |
+# plot posterior |
|
37 |
+ |
|
38 |
+par(font.lab=2) |
|
39 |
+par(font.axis=2) |
|
40 |
+plot(alpha,post(alpha),type='l', xlab=expression(paste(alpha,"(km)")),ylab=expression(prob(~alpha~"|{"~x[k]~"}",~beta,I)), lwd=2, main=paste("N=",N),xlim=c(-12,12),ylim=c(0,1.2)) |
|
41 |
+ |
|
42 |
+# plot points of samples at vertical position 1.1 |
|
43 |
+ |
|
44 |
+normpoint = (pos-pos)+1.1 |
|
45 |
+points(pos,normpoint) |
|
46 |
+ |
|
47 |
+# vertical line at mean of sample |
|
48 |
+abline(v=mean(pos),lwd=2,lty=2) |
|
49 |
+ |
|
50 |
+ |
|
51 |
+ |
... | ... |
@@ -0,0 +1,16 @@ |
1 |
+# EXAMPLE 5: Introduction to Statistics for Astrophysicists |
|
2 |
+# SS 2012 |
|
3 |
+# JOCHEN WELLER |
|
4 |
+ |
|
5 |
+# BINOMIAL PROBABILITY |
|
6 |
+ |
|
7 |
+N=20 |
|
8 |
+r=seq(0,N,by=1) |
|
9 |
+ |
|
10 |
+p=0.1 |
|
11 |
+ |
|
12 |
+plot(r,dbinom(r,N,p),type='h',xlim=c(0,20),xlab='r',ylab='f(r;N,p)',main=paste("N=",N,"; p=",p)) |
|
13 |
+ |
|
14 |
+ |
|
15 |
+ |
|
16 |
+ |
... | ... |
@@ -0,0 +1,20 @@ |
1 |
+# EXAMPLE 7: Introduction to Statistics for Astrophysicists |
|
2 |
+# SS 2012 |
|
3 |
+# JOCHEN WELLER |
|
4 |
+ |
|
5 |
+# Exponential PROBABILITY |
|
6 |
+ |
|
7 |
+ |
|
8 |
+x=seq(0,5,by=0.1) |
|
9 |
+ |
|
10 |
+xi=1.0 |
|
11 |
+plot(x,exp(-x/xi)/xi,type='l',xlim=c(0,5),xlab='x',ylab="f(x;xi)",lwd=2) |
|
12 |
+ |
|
13 |
+xi2=2.0 |
|
14 |
+lines(x,exp(-x/xi2)/xi2,lwd=2,lty=2) |
|
15 |
+ |
|
16 |
+xi3=5.0 |
|
17 |
+lines(x,exp(-x/xi3)/xi3,lwd=2,lty=3) |
|
18 |
+legend("topright",legend=c(paste("xi=",xi),paste("xi=",xi2),paste("xi=",xi3)),lty=c(1,2,3),lwd=c(2,2,2),col=c("black","black","black")) |
|
19 |
+ |
|
20 |
+ |
... | ... |
@@ -0,0 +1,35 @@ |
1 |
+# EXAMPLE 7: Introduction to Statistics for Astrophysicists |
|
2 |
+# SS 2012 |
|
3 |
+# JOCHEN WELLER |
|
4 |
+ |
|
5 |
+# LOG-NORMAL PROBABILITY |
|
6 |
+ |
|
7 |
+ |
|
8 |
+x=seq(0,4,by=0.1) |
|
9 |
+ |
|
10 |
+mu=0.0 |
|
11 |
+sigma=1.0 |
|
12 |
+norm=1.0/sqrt(2.0*pi)/sigma |
|
13 |
+plot(x,norm*exp(-(log(x)-mu)^2/sigma^2)/x,type='l',xlim=c(0,4),ylim=c(0,1),xlab='x',ylab="f(x;mu,sigma)",lwd=2) |
|
14 |
+ |
|
15 |
+ |
|
16 |
+ |
|
17 |
+mu=0 |
|
18 |
+sigma=1.5 |
|
19 |
+norm=1.0/sqrt(2.0*pi)/sigma |
|
20 |
+lines(x,norm*exp(-(log(x)-mu)^2/sigma^2)/x,lwd=2,lty=2) |
|
21 |
+ |
|
22 |
+mu=0 |
|
23 |
+sigma=0.5 |
|
24 |
+norm=1.0/sqrt(2.0*pi)/sigma |
|
25 |
+lines(x,norm*exp(-(log(x)-mu)^2/sigma^2)/x,lwd=2,lty=3) |
|
26 |
+ |
|
27 |
+mu=1 |
|
28 |
+sigma=1.0 |
|
29 |
+norm=1.0/sqrt(2.0*pi)/sigma |
|
30 |
+lines(x,norm*exp(-(log(x)-mu)^2/sigma^2)/x,lwd=2,lty=4) |
|
31 |
+ |
|
32 |
+ |
|
33 |
+legend("topright",legend=c("mu=0,sigma=1","mu=0,sigma=1.5","mu=0,sigma=0.5","mu=1,sigma=1"),lty=c(1,2,3,4),lwd=c(2,2,2,2),col=c("black","black","black","black")) |
|
34 |
+ |
|
35 |
+ |
... | ... |
@@ -0,0 +1,16 @@ |
1 |
+# EXAMPLE 9: Introduction to Statistics for Astrophysicists |
|
2 |
+# SS 2012 |
|
3 |
+# JOCHEN WELLER |
|
4 |
+ |
|
5 |
+# Poisson PROBABILITY |
|
6 |
+ |
|
7 |
+nu=1.7 |
|
8 |
+r=seq(0,8,by=1) |
|
9 |
+height=dpois(r,nu) |
|
10 |
+ |
|
11 |
+barplot(height,xlab='Number of Counts N',ylab="prob(N|D=12.5)",axisnames=TRUE) |
|
12 |
+ |
|
13 |
+ |
|
14 |
+ |
|
15 |
+ |
|
16 |
+ |
... | ... |
@@ -0,0 +1,65 @@ |
1 |
+# EXAMPLE 10: Introduction to Statistics for Astrophysicists |
|
2 |
+# SS 2012 |
|
3 |
+# JOCHEN WELLER |
|
4 |
+ |
|
5 |
+x0=1 |
|
6 |
+#fwhm = 5 = 2.35*sigma |
|
7 |
+w=2.13 |
|
8 |
+n0=33.333 |
|
9 |
+A=1 |
|
10 |
+B=2 |
|
11 |
+ |
|
12 |
+#First generate random data |
|
13 |
+#Datum is Gaussian, and measurement Poisson |
|
14 |
+ |
|
15 |
+xmin=-7 |
|
16 |
+xmax=7 |
|
17 |
+x=seq(xmin,xmax,by=1) |
|
18 |
+ |
|
19 |
+d=n0*(A*exp(-0.5*(x-x0)^2/w^2)+B) |
|
20 |
+N=d |
|
21 |
+imax=length(d) |
|
22 |
+i=1 |
|
23 |
+while (i <= imax) {N[i]=rpois(1,d[i]) |
|
24 |
+ i=i+1} |
|
25 |
+ |
|
26 |
+# The minimum chi2 for later |
|
27 |
+logepmin=sum(N*log(d)-d) |
|
28 |
+ |
|
29 |
+quartz() |
|
30 |
+ |
|
31 |
+# Plot the data |
|
32 |
+par(font.lab=2) |
|
33 |
+par(font.axis=2) |
|
34 |
+plot(x,N,type='s',xlim=c(xmin,xmax),lwd=2) |
|
35 |
+ |
|
36 |
+ |
|
37 |
+# posterior function for arbitrary A and B |
|
38 |
+posterior<- function(A,B) { |
|
39 |
+ d=n0*(A*exp(-0.5*(x-x0)^2/w^2)+B) |
|
40 |
+ dummy=exp(sum(N*log(d)-d)-logepmin) |
|
41 |
+ return(dummy)} |
|
42 |
+ |
|
43 |
+# scan the parameter space |
|
44 |
+Atest=seq(0,3,by = 0.02) |
|
45 |
+Btest=seq(0,3,by = 0.02) |
|
46 |
+ |
|
47 |
+jmax=length(Atest) |
|
48 |
+kmax=length(Btest) |
|
49 |
+j=1 |
|
50 |
+k=1 |
|
51 |
+# generate a posterior matrix for the contour plot |
|
52 |
+postplot = matrix(nrow=jmax,ncol=kmax) |
|
53 |
+while (j<=jmax){ k=1 |
|
54 |
+ while (k<=kmax) { |
|
55 |
+ postplot[j,k]=posterior(Atest[j],Btest[k]) |
|
56 |
+ k=k+1} |
|
57 |
+ j=j+1} |
|
58 |
+quartz() |
|
59 |
+contour(Atest,Btest,postplot,levels=c(0.9,0.7,0.5,0.3,0.1),drawlabels=FALSE,xlab='A',ylab='B',xlim=c(0,3),ylim=c(0,3)) |
|
60 |
+ |
|
61 |
+ |
|
62 |
+ |
|
63 |
+ |
|
64 |
+ |
|
65 |
+ |
... | ... |
@@ -0,0 +1,76 @@ |
1 |
+# EXAMPLE 11: Introduction to Statistics for Astrophysicists |
|
2 |
+# SS 2012 |
|
3 |
+# JOCHEN WELLER |
|
4 |
+ |
|
5 |
+x0=1 |
|
6 |
+#fwhm = 5 = 2.35*sigma |
|
7 |
+w=2.13 |
|
8 |
+n0=33.3333 |
|
9 |
+A=1 |
|
10 |
+B=2 |
|
11 |
+ |
|
12 |
+#First generate random data |
|
13 |
+#Datum is Gaussian, and measurement Poisson |
|
14 |
+ |
|
15 |
+xmin=-7 |
|
16 |
+xmax=7 |
|
17 |
+x=seq(xmin,xmax,by=1.0) |
|
18 |
+ |
|
19 |
+d=n0*(A*exp(-0.5*(x-x0)^2/w^2)+B) |
|
20 |
+N=d |
|
21 |
+imax=length(d) |
|
22 |
+i=1 |
|
23 |
+while (i <= imax) {N[i]=rpois(1,d[i]) |
|
24 |
+ i=i+1} |
|
25 |
+ |
|
26 |
+# The minimum chi2 for later |
|
27 |
+logepmin=sum(N*log(d)-d) |
|
28 |
+ |
|
29 |
+ |
|
30 |
+# posterior function for arbitrary A and B |
|
31 |
+posterior=function (A,B) |
|
32 |
+{ summe=0.0*A |
|
33 |
+ for (i in 1:length(x)) { |
|
34 |
+ di=n0*(A*exp(-0.5*(x[i]-x0)^2/w^2)+B) |
|
35 |
+ summe=summe+N[i]*log(di)-di |
|
36 |
+ } |
|
37 |
+ return(exp(summe-logepmin)) |
|
38 |
+} |
|
39 |
+pAmarg=function(Ai) {I=integrate(posterior,0.0,Inf,A=Ai) |
|
40 |
+ return(I$value) |
|
41 |
+ } |
|
42 |
+ |
|
43 |
+pAplot=function(Ai) {dumplot=Ai |
|
44 |
+ for (i in (1:length(Ai))) { |
|
45 |
+ Aarg=Ai[i]*1.0 |
|
46 |
+ dumplot[i]=pAmarg(Aarg) |
|
47 |
+ } |
|
48 |
+ return(dumplot)} |
|
49 |
+ |
|
50 |
+pBmarg=function(Bi) {I=integrate(posterior,0.0,Inf,B=Bi) |
|
51 |
+ return(I$value) |
|
52 |
+ } |
|
53 |
+ |
|
54 |
+pBplot=function(Bi) {dumplot=Bi |
|
55 |
+ for (i in (1:length(Bi))) { |
|
56 |
+ Barg=Bi[i]*1.0 |
|
57 |
+ dumplot[i]=pBmarg(Barg) |
|
58 |
+ } |
|
59 |
+ return(dumplot)} |
|
60 |
+ |
|
61 |
+Aplot=seq(0.1,3.0,by = 0.02) |
|
62 |
+Bplot=seq(0.1,3.0,by = 0.02) |
|
63 |
+ |
|
64 |
+normA=1.0/max(pAplot(Aplot)) |
|
65 |
+plot(Aplot,normA*pAplot(Aplot),type='l',lwd=2,xlab='A',ylab='prob(A|{N_k},I)') |
|
66 |
+normA2=1.0/max(posterior(Aplot,2.0)) |
|
67 |
+lines(Aplot,normA2*posterior(Aplot,2.0),lty=3,lwd=2) |
|
68 |
+ |
|
69 |
+quartz() |
|
70 |
+normB=1.0/max(pBplot(Bplot)) |
|
71 |
+plot(Bplot,normB*pBplot(Bplot),type='l',lwd=2,xlab='B',ylab='prob(B|{N_k},I)') |
|
72 |
+ |
|
73 |
+ |
|
74 |
+ |
|
75 |
+ |
|
76 |
+ |
|
0 | 77 |