... |
... |
@@ -83,6 +83,13 @@ dim_m = length(m_vec)
|
83 |
83 |
dim_a = length(a_vec)
|
84 |
84 |
dim_b = length(b_vec)
|
85 |
85 |
|
|
86 |
+err_qua_m = 0
|
|
87 |
+err_qua_a = 0
|
|
88 |
+err_qua_b = 0
|
|
89 |
+err_lin_b = 0
|
|
90 |
+err_lin_m = 0
|
|
91 |
+err_con_b = 0
|
|
92 |
+
|
86 |
93 |
#Marginalization of posterior_quad over a
|
87 |
94 |
int_qua_a=array(0, c(dim_m, dim_b))
|
88 |
95 |
for (i in (1:dim_m)){
|
... |
... |
@@ -128,3 +135,16 @@ for (i in (1:length(b_vec))){
|
128 |
135 |
int_lin_m=array(0, dim=c(dim_b))
|
129 |
136 |
I=int(b_vec, norm(posterior_con))
|
130 |
137 |
int_con_b=I
|
|
138 |
+
|
|
139 |
+
|
|
140 |
+
|
|
141 |
+# The integration via fit is computationally expensive compared to the simple numerical integration
|
|
142 |
+
|
|
143 |
+
|
|
144 |
+strqua = paste("quadratic: ax^2 + mx +b with a=",toString(best_a_qua),"+-",toString(err_qua_a),",\n m=", toString(best_m_qua),"+-",toString(err_qua_m),", b=",toString(best_b_qua),"+-",toString(err_qua_b))
|
|
145 |
+strlin = paste("linear: mx +b with m=", toString(best_m_lin),"+-",toString(err_lin_m),",\n b=",toString(best_b_lin),"+-",toString(err_lin_b))
|
|
146 |
+strcon = paste("constant: b with b=",toString(best_b_con),"+-",toString(err_con_b))
|
|
147 |
+print(strqua)
|
|
148 |
+text(0,2.8,strqua)
|
|
149 |
+text(0,2.1,strlin)
|
|
150 |
+text(0,1.6,strcon)
|