Christoph Budziszewski
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski commited 4dbef18 at 2009-01-21 16:34:25
function sMap=sompak_train(sMap,ft,cout,ct,din,dt,rlen,alpha,radius)
%SOMPAK_TRAIN Call SOM_PAK training program from Matlab.
%
% sMap=sompak_train(sMap,ft,cout,ct,din,dt,rlen,alpha,radius)
%
% ARGUMENTS ([]'s are optional and can be given as empty: [] or '')
% sMap (struct) map struct
% (string) filename
% [ft] (string) 'pak' or 'box'. Argument must be defined, if input file
% is used.
% [cout] (string) filename for output SOM, if argument is not defined
% (i.e. argument is '[]') temporary file '__abcdef' is
% used in operations and *it_is_removed* after
% operations!!!
% [ct] (string) 'pak' or 'box'. Argument must be defined, if output
% file is used.
% din (struct) data struct to be used in teaching
% (matrix) data matrix
% (string) filename
% If argument is not a filename or file is .mat -file,
% temporary file '__din' is used in operations
% and *it_is_removed* after operations!!!
% [dt] (string) 'pak' or 'box'. Argument must be defined, if input file
% is used.
% rlen (scalar) running length of teaching
% alpha (float) initial alpha value
% radius (float) initial radius of neighborhood
%
% RETURNS
% sMap (struct) map struct
%
% Calls SOM_PAK training program (vsom) from Matlab. Notice that to
% use this function, the SOM_PAK programs must be in your search path,
% or the variable 'SOM_PAKDIR' which is a string containing the
% program path, must be defined in the workspace. SOM_PAK programs can
% be found from: http://www.cis.hut.fi/research/som_lvq_pak.shtml
%
% See also SOMPAK_TRAIN, SOMPAK_SAMMON, SOMPAK_TRAIN_GUI,
% SOMPAK_GUI, SOM_SEQTRAIN.
% Contributed to SOM Toolbox vs2, February 2nd, 2000 by Juha Parhankangas
% Copyright (c) by Juha Parhankangas
% http://www.cis.hut.fi/projects/somtoolbox/
% Juha Parhankangas 050100
nargchk(9,9,nargin);
NO_FILE=0;
 
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX