git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_connection.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_connection.m
Blame
History
Raw
function C=som_connection(S) %SOM_CONNECTION Connection matrix for 'hexa' and 'rect' lattices % % C=som_connection(S) % % C=som_connection(sMap); % C=som_connection(sTopol); % C=som_connection({'hexa', [6 5], 'sheet'}); % % Input and output arguments: % S (struct) map or topol struct % (cell array) a cell array of form {lattice, msize, shape}, where % lattice: 'hexa' or 'rect' % msize : 1x2 vector % shape : 'sheet', 'cyl or 'toroid' % % C (sparse) An NxN connection matrix, N=prod(msize) % % The function returns a connection matrix, e.g., for drawing % connections between map units in the function som_grid. Note that % the connections are defined only in the upper triangular part to % save some memory!! Function SOM_UNIT_NEIGHS does the same thing, % but also has values in the lower triangular. It is also slower. % % For more help, try 'type som_connection' or check out online documentation. % See also SOM_GRID, SOM_UNIT_NEIGHS. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_connection % % PURPOSE % % To create a connection matrix of SOM 'hexa' and 'rect' negihborhoods % % SYNTAX % % C = som_connection(S) % % DESCRIPTION % % Creates a connection matrix of SOM 'hexa' and 'rect' % neighborhoods. The connections are defined only in the upper % triangular part to save some memory. % % Function SOM_UNIT_NEIGHS does the same thing, but also has values % in the lower triangular. It is also slower, except for % 'toroid' shape because in that case this function calls % SOM_UNIT_NEIGHS... % % REQUIRED INPUT ARGUMENTS % % S map topology % (map struct) S.topol is used to build the matrix % (topol struct) topology information is used to build the matrix % (cell array) of form {lattice, msize, shape}, where % lattice: 'hexa' or 'rect' % msize : 1x2 vector % shape : 'sheet', 'cyl or 'toroid' % % OUTPUT ARGUMENTS % % C (sparse) munits x munits sparse matrix which describes % nearest neighbor connections between units % % EXAMPLE % % C = som_connection('hexa',[3 4],'sheet'); % full(C) % ans = % % 0 1 0 1 0 0 0 0 0 0 0 0 % 0 0 1 1 1 1 0 0 0 0 0 0 % 0 0 0 0 0 1 0 0 0 0 0 0 % 0 0 0 0 1 0 1 0 0 0 0 0 % 0 0 0 0 0 1 1 1 1 0 0 0 % 0 0 0 0 0 0 0 0 1 0 0 0 % 0 0 0 0 0 0 0 1 0 1 0 0 % 0 0 0 0 0 0 0 0 1 1 1 1 % 0 0 0 0 0 0 0 0 0 0 0 1 % 0 0 0 0 0 0 0 0 0 0 1 0 % 0 0 0 0 0 0 0 0 0 0 0 1 % 0 0 0 0 0 0 0 0 0 0 0 0 % % SEE ALSO % % som_grid Visualization of a SOM grid % som_unit_neighs Units in 1-neighborhood for all map units. % Copyright (c) 1999-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0alpha Johan 061099 juuso 151199 170400 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Check arguments error(nargchk(1, 1, nargin)); % check number of input arguments [tmp,ok,tmp]=som_set(S); if isstruct(S) & all(ok), % check m type switch S.type case 'som_topol' msize=S.msize; lattice=S.lattice; shape=S.shape; case 'som_map' msize=S.topol.msize; lattice=S.topol.lattice; shape=S.topol.shape; otherwise error('Invalid map or topol struct.'); end elseif iscell(S), if vis_valuetype(S,{'topol_cell'}), lattice=S{1}; msize=S{2}; shape=S{3}; else error('{lattice, msize, shape} expected for cell input.') end else error('{lattice, msize, shape}, or map or topol struct expected.') end if ~vis_valuetype(msize,{'1x2'}) error('Invalid map size: only 2D maps allowed.') end %% Init %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N=msize(1)*msize(2); %% Action & Build output arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch lattice case 'hexa' l1=ones(N,1); l1((msize(1)+1):msize(1):end)=0; l2=zeros(msize(1),1); l3=l2; l2(1:2:end-1)=1; l3(3:2:end)=1; l2=repmat(l2,msize(2),1); l3=repmat(l3,msize(2),1); C= ... spdiags([l1 l2 ones(N,1) l3], [1 msize(1)-1:msize(1)+1],N,N); case 'rect' l1=ones(N,1);l1((msize(1)+1):msize(1):end)=0; C=spdiags([l1 ones(N,1)],[1 msize(1)],N,N); otherwise error('Unknown lattice.') end switch shape case 'sheet' ; case 'cyl' C=spdiags(ones(N,1),msize(1)*(msize(2)-1),C); case 'toroid' %warning('Toroid not yet implemented: using ''cyl''.'); %C=spdiags(ones(N,1),msize(1)*(msize(2)-1),C); %l=zeros(N,1); l(1:msize(2):end)=1; %C=spdiags(l,msize(1),C); % use som_unit_neighs to calculate these C = som_unit_neighs(msize,lattice,'toroid'); % to be consistent, set the lower triangular values to zero munits = prod(msize); for i=1:(munits-1), C((i+1):munits,i) = 0; end otherwise error('Unknown shape.'); end