git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_drmake.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_drmake.m
Blame
History
Raw
function [sR,best,sig,Cm] = som_drmake(D,inds1,inds2,sigmea,nanis) % SOM_DRMAKE Make descriptive rules for given group within the given data. % % sR = som_drmake(D,[inds1],[inds2],[sigmea],[nanis]) % % D (struct) map or data struct % (matrix) the data, of size [dlen x dim] % [inds1] (vector) indeces belonging to the group % (the whole data set by default) % [inds2] (vector) indeces belonging to the contrast group % (the rest of the data set by default) % [sigmea] (string) significance measure: 'accuracy', % 'mutuconf' (default), or 'accuracyI'. % (See definitions below). % [nanis] (scalar) value given for NaNs: 0 (=FALSE, default), % 1 (=TRUE) or NaN (=ignored) % % sR (struct array) best rule for each component. Each % struct has the following fields: % .type (string) 'som_rule' % .name (string) name of the component % .low (scalar) the low end of the rule range % .high (scalar) the high end of the rule range % .nanis (scalar) how NaNs are handled: NaN, 0 or 1 % % best (vector) indeces of rules which make the best combined rule % sig (vector) significance measure values for each rule, and for the combined rule % Cm (matrix) A matrix of vectorized confusion matrices for each rule, % and for the combined rule: [a, c, b, d] (see below). % % For each rule, such rules sR.low <= x < sR.high are found % which optimize the given significance measure. The confusion % matrix below between the given grouping (G: group - not G: contrast group) % and rule (R: true or false) is used to determine the significance values: % % G not G % --------------- accuracy = (a+d) / (a+b+c+d) % true | a | b | % |-------------- mutuconf = a*a / ((a+b)(a+c)) % false | c | d | % --------------- accuracyI = a / (a+b+c) % % See also SOM_DREVAL, SOM_DRTABLE. % Contributed to SOM Toolbox 2.0, January 7th, 2002 by Juha Vesanto % Copyright (c) by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 070102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% input arguments if isstruct(D), switch D.type, case 'som_data', cn = D.comp_names; D = D.data; case 'som_map', cn = D.comp_names; D = D.codebook; end else cn = cell(size(D,2),1); for i=1:size(D,2), cn{i} = sprintf('Variable%d',i); end end [dlen,dim] = size(D); if nargin<2 | isempty(inds1), inds1 = 1:dlen; end if nargin<3 | isempty(inds2), i = ones(dlen,1); i(inds1) = 0; inds2 = find(i); end if nargin<4, sigmea = 'mutuconf'; end if nargin<5, nanis = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% input arguments sig = zeros(dim+1,1); Cm = zeros(dim+1,4); sR1tmp = struct('type','som_rule','name','','low',-Inf,'high',Inf,'nanis',nanis,'lowstr','','highstr',''); sR = sR1tmp; % single variable rules for i=1:dim, % bin edges mi = min(D(:,i)); ma = max(D(:,i)); [histcount,bins] = hist([mi,ma],10); if size(bins,1)>1, bins = bins'; end edges = [-Inf, (bins(1:end-1)+bins(2:end))/2, Inf]; % find the rule for this variable [low,high,s,cm] = onevar_descrule(D(inds1,i),D(inds2,i),sigmea,nanis,edges); sR1 = sR1tmp; sR1.name = cn{i}; sR1.low = low; sR1.high = high; sR(i) = sR1; sig(i) = s; Cm(i,:) = cm; end % find combined rule [dummy,order] = sort(-sig); maxsig = sig(order(1)); bestcm = Cm(order(1),:); best = order(1); for i=2:dim, com = [best, order(i)]; [s,cm,truex,truey] = som_dreval(sR(com),D(:,com),sigmea,inds1,inds2,'and'); if s>maxsig, best = com; maxsig = s; bestcm = cm; end end sig(end) = maxsig; Cm(end,:) = cm; return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 %% descriptive rules function [low,high,sig,cm] = onevar_descrule(x,y,sigmea,nanis,edges) % Given a set of bin edges, find the range of bins with best significance. % % x data values in cluster % y data values not in cluster % sigmea significance measure % bins bin centers % nanis how to handle NaNs % histogram counts if isnan(nanis), x = x(~isnan(x)); y = y(~isnan(y)); end [xcount,xbin] = histc(x,edges); [ycount,ybin] = histc(y,edges); xcount = xcount(1:end-1); ycount = ycount(1:end-1); xnan=sum(isnan(x)); ynan=sum(isnan(y)); % find number of true items in both groups in all possible ranges n = length(xcount); V = zeros(n*(n+1)/2,4); s1 = cumsum(xcount); s2 = cumsum(xcount(end:-1:1)); s2 = s2(end:-1:1); m = s1(end); Tx = triu(s1(end)-m*log(exp(s1/m)*exp(s2/m)')+repmat(xcount',[n 1])+repmat(xcount,[1 n]),0); s1 = cumsum(ycount); s2 = cumsum(ycount(end:-1:1)); s2 = s2(end:-1:1); Ty = triu(s1(end)-m*log(exp(s1/m)*exp(s2/m)')+repmat(ycount',[n 1])+repmat(ycount,[1 n]),0); [i,j] = find(Tx+Ty); k = sub2ind(size(Tx),i,j); V = [i, j, Tx(k), Ty(k)]; tix = V(:,3) + nanis*xnan; tiy = V(:,4) + nanis*ynan; % select the best range nix = length(x); niy = length(y); Cm = [tix,nix-tix,tiy,niy-tiy]; [s,k] = max(som_drsignif(sigmea,Cm)); % output low = edges(V(k,1)); high = edges(V(k,2)+1); sig = s; cm = Cm(k,:); return;