git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_hits.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_hits.m
Blame
History
Raw
function [hits] = som_hits(sMap, sData, mode) %SOM_HITS Calculate the response of the given data on the map. % % hits = som_hits(sMap, sData, [mode]) % % h = som_hits(sMap,sData); % h = som_hits(sMap,sData,'fuzzy'); % % Input and output arguments ([]'s are optional): % sMap (struct) map struct % (matrix) codebook matrix, size munits x dim % sData (struct) data struct % (matrix) data matrix, size dlen x dim % [mode] (string) 'crisp' (default), 'kernel', 'fuzzy' % % hits (vector) the number of hits in each map unit, length = munits % % The response of the data on the map can be calculated e.g. in % three ways, selected with the mode argument: % 'crisp' traditional hit histogram % 'kernel' a sum of dlen neighborhood kernels, where kernel % is positioned on the BMU of each data sample. The % neighborhood function is sMap.neigh and the % neighborhood width is sMap.trainhist(end).radius_fin % or 1 if this is empty or NaN % 'fuzzy' fuzzy response calculated by summing 1./(1+(q/a)^2) % for each data sample, where q is a vector containing % distance from the data sample to each map unit and % a is average quantization error % % For more help, try 'type som_hits' or check out online documentation. % See also SOM_AUTOLABEL, SOM_BMUS. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_hits % % PURPOSE % % Calculate the response of the given data on the map. % % SYNTAX % % hits = som_hits(sMap, sData) % hits = som_hits(M, D) % hits = som_hits(..., mode) % % DESCRIPTION % % Returns a vector indicating the response of the map to the data. % The response of the data on the map can be calculated e.g. in % three ways, selected with the mode argument: % 'crisp' traditional hit histogram: how many times each map unit % was the BMU for the data set % 'kernel' a sum of neighborhood kernels, where a kernel % is positioned on the BMU of each data sample. The % neighborhood function is sMap.neigh and the % neighborhood width is sMap.trainhist(end).radius_fin % or 1 if this is not available % 'fuzzy' fuzzy response calculated by summing % % 1 % ------------ % 1 + (q/a)^2 % % for each data sample, where q is a vector containing % distance from the data sample to each map unit and % a is average quantization error % % REQUIRED INPUT ARGUMENTS % % sMap The vectors from among which the BMUs are searched % for. These must not have any unknown components (NaNs). % (struct) map struct % (matrix) codebook matrix, size munits x dim % % sData The data vector(s) for which the BMUs are searched. % (struct) data struct % (matrix) data matrix, size dlen x dim % % OPTIONAL INPUT ARGUMENTS % % mode (string) The respond mode: 'crisp' (default), 'kernel' % or 'fuzzy'. 'kernel' can only be used if % the first argument (sMap) is a map struct. % % OUTPUT ARGUMENTS % % hits (vector) The number of hits in each map unit. % % EXAMPLES % % hits = som_hits(sM,D); % hits = som_hits(sM,D,'kernel'); % hits = som_hits(sM,D,'fuzzy'); % % SEE ALSO % % som_bmus Find BMUs and quantization errors for a given data set. % Copyright (c) 1997-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 1.0beta juuso 220997 % Version 2.0beta juuso 161199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% check arguments error(nargchk(2, 3, nargin)); % check no. of input args is correct if isstruct(sMap), switch sMap.type, case 'som_map', munits = prod(sMap.topol.msize); case 'som_data', munits = size(sMap.data,1); otherwise, error('Illegal struct for 1st argument.') end else munits = size(sMap,1); end hits = zeros(munits,1); if nargin<3, mode = 'crisp'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% action % calculate BMUs [bmus,qerrs] = som_bmus(sMap,sData,1); switch mode, case 'crisp', % for each unit, check how many hits it got for i=1:munits, hits(i) = sum(bmus == i); end case 'kernel', % check that sMap really is a map if ~isstruct(sMap) & ~strcmp(sMap.type,'som_map'), error('Kernel mode can only be used for maps.'); end % calculate neighborhood kernel Ud = som_unit_dists(sMap.topol).^2; sTrain = sMap.trainhist(end); if ~isempty(sTrain), rad = sTrain.radius_fin; if isempty(rad) | isnan(rad), rad = 1; end else rad = 1; end rad = rad^2; if rad==0, rad = eps; end % to avoid divide-by-0 errors switch sTrain.neigh, case 'bubble', H = (Ud<=rad); case 'gaussian', H = exp(-Ud/(2*rad)); case 'cutgauss', H = exp(-Ud/(2*rad)) .* (Ud<=rad); case 'ep', H = (1-Ud/rad) .* (Ud<=rad); end % weight hits with neighborhood kernel hits = sum(H(bmus,:),1)'; case 'fuzzy', % extract the two matrices (M, D) and the mask mask = []; if isstruct(sMap), if strcmp(sMap.type,'som_data'), M = sMap.data; else M = sMap.codebook; mask = sMap.mask; end else M = sMap; end if any(isnan(M(:))), error('Data in first argument must not have any NaNs.'); end if isstruct(sData), switch sData.type, case 'som_map', D = sData.codebook; if isempty(mask), mask = sData.mask; end case 'som_data', D = sData.data; otherwise, error('Illegal 2nd argument.'); end else D = sData; end [dlen dim] = size(D); if isempty(mask), mask = ones(dim,1); end % scaling factor a = mean(qerrs).^2; % calculate distances & bmus % (this is better explained in som_batchtrain and som_bmus) Known = ~isnan(D); D(find(~Known)) = 0; % unknown components blen = min(munits,dlen); % block size W1 = mask*ones(1,blen); W2 = ones(munits,1)*mask'; D = D'; Known = Known'; i0 = 0; while i0+1<=dlen, inds = [(i0+1):min(dlen,i0+blen)]; i0 = i0+blen; % indeces Dist = (M.^2)*(W1(:,1:length(inds)).*Known(:,inds)) ... + W2*(D(:,inds).^2) ... - 2*M*diag(mask)*D(:,inds); % squared distances hits = hits + sum(1./(1+Dist/a),2); end otherwise, error(['Unknown mode: ' mode]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%