git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_umat.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_umat.m
Blame
History
Raw
function U = som_umat(sMap, varargin) %SOM_UMAT Compute unified distance matrix of self-organizing map. % % U = som_umat(sMap, [argID, value, ...]) % % U = som_umat(sMap); % U = som_umat(M,sTopol,'median','mask',[1 1 0 1]); % % Input and output arguments ([]'s are optional): % sMap (struct) map struct or % (matrix) the codebook matrix of the map % [argID, (string) See below. The values which are unambiguous can % value] (varies) be given without the preceeding argID. % % U (matrix) u-matrix of the self-organizing map % % Here are the valid argument IDs and corresponding values. The values which % are unambiguous (marked with '*') can be given without the preceeding argID. % 'mask' (vector) size dim x 1, weighting factors for different % components (same as BMU search mask) % 'msize' (vector) map grid size % 'topol' *(struct) topology struct % 'som_topol','sTopol' = 'topol' % 'lattice' *(string) map lattice, 'hexa' or 'rect' % 'mode' *(string) 'min','mean','median','max', default is 'median' % % NOTE! the U-matrix is always calculated for 'sheet'-shaped map and % the map grid must be at most 2-dimensional. % % For more help, try 'type som_umat' or check out online documentation. % See also SOM_SHOW, SOM_CPLANE. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_umat % % PURPOSE % % Computes the unified distance matrix of a SOM. % % SYNTAX % % U = som_umat(sM) % U = som_umat(...,'argID',value,...) % U = som_umat(...,value,...) % % DESCRIPTION % % Compute and return the unified distance matrix of a SOM. % For example a case of 5x1 -sized map: % m(1) m(2) m(3) m(4) m(5) % where m(i) denotes one map unit. The u-matrix is a 9x1 vector: % u(1) u(1,2) u(2) u(2,3) u(3) u(3,4) u(4) u(4,5) u(5) % where u(i,j) is the distance between map units m(i) and m(j) % and u(k) is the mean (or minimum, maximum or median) of the % surrounding values, e.g. u(3) = (u(2,3) + u(3,4))/2. % % Note that the u-matrix is always calculated for 'sheet'-shaped map and % the map grid must be at most 2-dimensional. % % REFERENCES % % Ultsch, A., Siemon, H.P., "Kohonen's Self-Organizing Feature Maps % for Exploratory Data Analysis", in Proc. of INNC'90, % International Neural Network Conference, Dordrecht, % Netherlands, 1990, pp. 305-308. % Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, % Berlin, 1995, pp. 117-119. % Iivarinen, J., Kohonen, T., Kangas, J., Kaski, S., "Visualizing % the Clusters on the Self-Organizing Map", in proceedings of % Conference on Artificial Intelligence Research in Finland, % Helsinki, Finland, 1994, pp. 122-126. % Kraaijveld, M.A., Mao, J., Jain, A.K., "A Nonlinear Projection % Method Based on Kohonen's Topology Preserving Maps", IEEE % Transactions on Neural Networks, vol. 6, no. 3, 1995, pp. 548-559. % % REQUIRED INPUT ARGUMENTS % % sM (struct) SOM Toolbox struct or the codebook matrix of the map. % (matrix) The matrix may be 3-dimensional in which case the first % two dimensions are taken for the map grid dimensions (msize). % % OPTIONAL INPUT ARGUMENTS % % argID (string) Argument identifier string (see below). % value (varies) Value for the argument (see below). % % The optional arguments are given as 'argID',value -pairs. If the % value is unambiguous, it can be given without the preceeding argID. % If an argument is given value multiple times, the last one is used. % % Below is the list of valid arguments: % 'mask' (vector) mask to be used in calculating % the interunit distances, size [dim 1]. Default is % the one in sM (field sM.mask) or a vector of % ones if only a codebook matrix was given. % 'topol' (struct) topology of the map. Default is the one % in sM (field sM.topol). % 'sTopol','som_topol' (struct) = 'topol' % 'msize' (vector) map grid dimensions % 'lattice' (string) map lattice 'rect' or 'hexa' % 'mode' (string) 'min', 'mean', 'median' or 'max' % Map unit value computation method. In fact, % eval-function is used to evaluate this, so % you can give other computation methods as well. % Default is 'median'. % % OUTPUT ARGUMENTS % % U (matrix) the unified distance matrix of the SOM % size 2*n1-1 x 2*n2-1, where n1 = msize(1) and n2 = msize(2) % % EXAMPLES % % U = som_umat(sM); % U = som_umat(sM.codebook,sM.topol,'median','mask',[1 1 0 1]); % U = som_umat(rand(10,10,4),'hexa','rect'); % % SEE ALSO % % som_show show the selected component planes and the u-matrix % som_cplane draw a 2D unified distance matrix % Copyright (c) 1997-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 1.0beta juuso 260997 % Version 2.0beta juuso 151199, 151299, 200900 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% check arguments error(nargchk(1, Inf, nargin)); % check no. of input arguments is correct % sMap if isstruct(sMap), M = sMap.codebook; sTopol = sMap.topol; mask = sMap.mask; elseif isnumeric(sMap), M = sMap; si = size(M); dim = si(end); if length(si)>2, msize = si(1:end-1); else msize = [si(1) 1]; end munits = prod(msize); sTopol = som_set('som_topol','msize',msize,'lattice','rect','shape','sheet'); mask = ones(dim,1); M = reshape(M,[munits,dim]); end mode = 'median'; % varargin i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, % argument IDs case 'mask', i=i+1; mask = varargin{i}; case 'msize', i=i+1; sTopol.msize = varargin{i}; case 'lattice', i=i+1; sTopol.lattice = varargin{i}; case {'topol','som_topol','sTopol'}, i=i+1; sTopol = varargin{i}; case 'mode', i=i+1; mode = varargin{i}; % unambiguous values case {'hexa','rect'}, sTopol.lattice = varargin{i}; case {'min','mean','median','max'}, mode = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}(1).type, case 'som_topol', sTopol = varargin{i}; case 'som_map', sTopol = varargin{i}.topol; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_umat) Ignoring invalid argument #' num2str(i+1)]); end i = i+1; end % check [munits dim] = size(M); if prod(sTopol.msize)~=munits, error('Map grid size does not match the number of map units.') end if length(sTopol.msize)>2, error('Can only handle 1- and 2-dimensional map grids.') end if prod(sTopol.msize)==1, warning('Only one codebook vector.'); U = []; return; end if ~strcmp(sTopol.shape,'sheet'), disp(['The ' sTopol.shape ' shape of the map ignored. Using sheet instead.']); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% initialize variables y = sTopol.msize(1); x = sTopol.msize(2); lattice = sTopol.lattice; shape = sTopol.shape; M = reshape(M,[y x dim]); ux = 2 * x - 1; uy = 2 * y - 1; U = zeros(uy, ux); calc = sprintf('%s(a)',mode); if size(mask,2)>1, mask = mask'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% u-matrix computation % distances between map units if strcmp(lattice, 'rect'), % rectangular lattice for j=1:y, for i=1:x, if i<x, dx = (M(j,i,:) - M(j,i+1,:)).^2; % horizontal U(2*j-1,2*i) = sqrt(mask'*dx(:)); end if j<y, dy = (M(j,i,:) - M(j+1,i,:)).^2; % vertical U(2*j,2*i-1) = sqrt(mask'*dy(:)); end if j<y & i<x, dz1 = (M(j,i,:) - M(j+1,i+1,:)).^2; % diagonals dz2 = (M(j+1,i,:) - M(j,i+1,:)).^2; U(2*j,2*i) = (sqrt(mask'*dz1(:))+sqrt(mask'*dz2(:)))/(2 * sqrt(2)); end end end elseif strcmp(lattice, 'hexa') % hexagonal lattice for j=1:y, for i=1:x, if i<x, dx = (M(j,i,:) - M(j,i+1,:)).^2; % horizontal U(2*j-1,2*i) = sqrt(mask'*dx(:)); end if j<y, % diagonals dy = (M(j,i,:) - M(j+1,i,:)).^2; U(2*j,2*i-1) = sqrt(mask'*dy(:)); if rem(j,2)==0 & i<x, dz= (M(j,i,:) - M(j+1,i+1,:)).^2; U(2*j,2*i) = sqrt(mask'*dz(:)); elseif rem(j,2)==1 & i>1, dz = (M(j,i,:) - M(j+1,i-1,:)).^2; U(2*j,2*i-2) = sqrt(mask'*dz(:)); end end end end end % values on the units if (uy == 1 | ux == 1), % in 1-D case, mean is equal to median ma = max([ux uy]); for i = 1:2:ma, if i>1 & i<ma, a = [U(i-1) U(i+1)]; U(i) = eval(calc); elseif i==1, U(i) = U(i+1); else U(i) = U(i-1); % i==ma end end elseif strcmp(lattice, 'rect') for j=1:2:uy, for i=1:2:ux, if i>1 & j>1 & i<ux & j<uy, % middle part of the map a = [U(j,i-1) U(j,i+1) U(j-1,i) U(j+1,i)]; elseif j==1 & i>1 & i<ux, % upper edge a = [U(j,i-1) U(j,i+1) U(j+1,i)]; elseif j==uy & i>1 & i<ux, % lower edge a = [U(j,i-1) U(j,i+1) U(j-1,i)]; elseif i==1 & j>1 & j<uy, % left edge a = [U(j,i+1) U(j-1,i) U(j+1,i)]; elseif i==ux & j>1 & j<uy, % right edge a = [U(j,i-1) U(j-1,i) U(j+1,i)]; elseif i==1 & j==1, % top left corner a = [U(j,i+1) U(j+1,i)]; elseif i==ux & j==1, % top right corner a = [U(j,i-1) U(j+1,i)]; elseif i==1 & j==uy, % bottom left corner a = [U(j,i+1) U(j-1,i)]; elseif i==ux & j==uy, % bottom right corner a = [U(j,i-1) U(j-1,i)]; else a = 0; end U(j,i) = eval(calc); end end elseif strcmp(lattice, 'hexa') for j=1:2:uy, for i=1:2:ux, if i>1 & j>1 & i<ux & j<uy, % middle part of the map a = [U(j,i-1) U(j,i+1)]; if rem(j-1,4)==0, a = [a, U(j-1,i-1) U(j-1,i) U(j+1,i-1) U(j+1,i)]; else a = [a, U(j-1,i) U(j-1,i+1) U(j+1,i) U(j+1,i+1)]; end elseif j==1 & i>1 & i<ux, % upper edge a = [U(j,i-1) U(j,i+1) U(j+1,i-1) U(j+1,i)]; elseif j==uy & i>1 & i<ux, % lower edge a = [U(j,i-1) U(j,i+1)]; if rem(j-1,4)==0, a = [a, U(j-1,i-1) U(j-1,i)]; else a = [a, U(j-1,i) U(j-1,i+1)]; end elseif i==1 & j>1 & j<uy, % left edge a = U(j,i+1); if rem(j-1,4)==0, a = [a, U(j-1,i) U(j+1,i)]; else a = [a, U(j-1,i) U(j-1,i+1) U(j+1,i) U(j+1,i+1)]; end elseif i==ux & j>1 & j<uy, % right edge a = U(j,i-1); if rem(j-1,4)==0, a=[a, U(j-1,i) U(j-1,i-1) U(j+1,i) U(j+1,i-1)]; else a = [a, U(j-1,i) U(j+1,i)]; end elseif i==1 & j==1, % top left corner a = [U(j,i+1) U(j+1,i)]; elseif i==ux & j==1, % top right corner a = [U(j,i-1) U(j+1,i-1) U(j+1,i)]; elseif i==1 & j==uy, % bottom left corner if rem(j-1,4)==0, a = [U(j,i+1) U(j-1,i)]; else a = [U(j,i+1) U(j-1,i) U(j-1,i+1)]; end elseif i==ux & j==uy, % bottom right corner if rem(j-1,4)==0, a = [U(j,i-1) U(j-1,i) U(j-1,i-1)]; else a = [U(j,i-1) U(j-1,i)]; end else a=0; end U(j,i) = eval(calc); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% normalization between [0,1] % U = U - min(min(U)); % ma = max(max(U)); if ma > 0, U = U / ma; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%