git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
8f723b0
Branches
Tags
master
SVMCrossVal.git
private
calculateDecodePerformance.m
minor changes in coding style
Christoph Budziszewski
commited
8f723b0
at 2009-01-25 22:25:53
calculateDecodePerformance.m
Blame
History
Raw
% function [decodePerformance rawTimecourse ] = calculateDecodePerformance(des,timeLineStart, timeLineEnd, decodeDuration, svmargs, conditionList, sessionList, voxelList, classList, labelMap,normalize) function outputStruct = calculateDecodePerformance(inputStruct,SubjectID) addpath 'libsvm-mat-2.88-1'; METHOD = 'single subject SVM'; % METHOD = 'cross subject SVM'; % METHOD = 'SOM'; outputStruct = struct; namehelper = strcat('s',SubjectID); des = inputStruct.(namehelper).des; timeLineStart = inputStruct.frameShiftStart; timeLineEnd = inputStruct.frameShiftEnd; decodeDuration = inputStruct.decodeDuration; svmargs = inputStruct.svmargs; sessionList = inputStruct.sessionList; voxelList = inputStruct.(namehelper).voxelList; % classList = inputStruct.classList; % labelMap = inputStruct.labelMap; smoothed = inputStruct.smoothed; globalStart = inputStruct.psthStart; globalEnd = inputStruct.psthEnd; baselineStart = inputStruct.baselineStart; baselineEnd = inputStruct.baselineEnd; eventList = inputStruct.eventList; minPerformance = inf; maxPerformance = -inf; %% ERSETZEN DURCH ROI-IMAGE! for voxel = 1:size(voxelList,1) % [[x;x],[y;y],[z;z]] extr = calculateImageData(voxelList(voxel,:),des,smoothed); rawdata = cell2mat({extr.mean}); % Raw Data pst{voxel} = calculatePST(des,globalStart,baselineStart,baselineEnd,globalEnd,eventList,rawdata,sessionList); end timePointArgs.pst = pst; timePointArgs.timeLineStart = timeLineStart; timePointArgs.timeLineEnd = timeLineEnd; timePointArgs.globalStart = globalStart; timePointArgs.globalEnd = globalEnd; timePointArgs.decodeDuration= decodeDuration; timePointArgs.labelMap = inputStruct.labelMap; timePointArgs.eventList = eventList; timePointMatrix = buildTimePointMatrix(timePointArgs); decodePerformance = []; for index = 1:timeLineEnd-timeLineStart+1 RANDOMIZE_DATAPOINTS = 0; svmdata = timePointMatrix{index}(:,2:size(timePointMatrix{index},2)); svmlabel = timePointMatrix{index}(:,1); if RANDOMIZE_DATAPOINTS rndindex = randperm(length(svmlabel)); svmdata = svmdata(rndindex,:); svmlabel = svmlabel(rndindex); end SVM_METHOD = 'som training' switch SVM_METHOD; case 'libsvm crossval' performance = svmtrain(svmlabel, svmdata, svmargs); minPerformance = min(minPerformance,performance); maxPerformance = max(maxPerformance,performance); decodePerformance = [decodePerformance; performance]; case 'class performance' newsvmopt = killCrossvalOpt(svmargs); model = svmtrain(svmlabel,svmdata,newsvmopt); classperformance = []; for class = unique(svmlabel)'; filterindex = find(class == svmlabel); testing_label = svmlabel(filterindex); testing_data = svmdata(filterindex); [plabel accuracy dvalue] = svmpredict(testing_label,testing_data,model,''); classperformance = [classperformance accuracy(1)]; end decodePerformance = [decodePerformance; classperformance]; case 'som training' display('SOM TRAINING'); addpath 'somtoolbox2'; sD = som_data_struct(svmdata,'label',num2str(svmlabel)); assignin('base','sD',sD); sM = som_make(sD,'msize', [3 4],'lattice', 'rect'); assignin('base','sD',sD); assignin('base','sM',sM); end end outputStruct.decodePerformance = decodePerformance; outputStruct.svmdata = svmdata; outputStruct.svmlabel = svmlabel; outputStruct.rawTimeCourse = pst; outputStruct.minPerformance = minPerformance; outputStruct.maxPerformance = maxPerformance; end function opts = killCrossvalOpt(svmopt) opts = ''; idx1 = 1; for idx2=strfind(svmopt,' -') if idx1 ~= strfind(svmopt,' -v') opts = strcat(opts,svmopt(idx1:idx2)); end idx1=idx2; if idx2==max(strfind(svmopt,' -')) opts = strcat(opts,svmopt(idx2:end)); end end end