git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_clspread.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_clspread.m
Blame
History
Raw
function base = som_clspread(sM,base,cldist,Ne,verbosity) % SOM_CLSPREAD Partition the given data by flooding. % % part = som_clspread(sM,part,cldist,[Ne],[verbos]) % % Input and output arguments ([]'s are optional): % sM (struct) map or data struct % (matrix) size dlen x dim, the data set % base (vector) initial partition, where if base(i) is % 0 i should be assigned to some cluster % NaN i should not be assigned to any cluster % otherwise i belongs to cluster base(i) % cldist (string) cluster distance measure: 'single', 'average', % 'complete', 'neighf', 'ward', 'centroid', 'BMU' % [Ne] (scalar) 0 = not constrined to neighborhood % 1 = constrained % (matrix) size dlen x dlen, indicating possible connections % [verbos] (scalar) 1 (default) = show status bar % 0 = don't % % See also SOM_CLDIST. % Copyright (c) 2000 by Juha Vesanto % Contributed to SOM Toolbox on XXX by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 220800 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% input arguments q = 2; % map/data if isstruct(sM), switch sM.type, case 'som_map', M = sM.codebook; mask = sM.mask; sT = sM.topol; case 'som_data', M = sM.data; mask = []; sT = []; end else M = sM; mask = []; sT = []; end [dlen dim] = size(M); if isempty(mask), mask = ones(dim,1); end % simple option if any(strcmp(cldist,{'closest','BMU'})), i0 = find(base==0); i1 = find(base>0); bmus = som_bmus(M(i1,:),M(i0,:)); base(i0) = base(i1(bmus)); return; end % constrained clustering if nargin<4, Ne = []; end if prod(size(Ne))==1, if Ne & isempty(sT), warning('Cannot use constrained clustering.'); Ne = 0; end if Ne, Ne = som_unit_neighs(sT); else Ne = []; end end if ~isempty(Ne), Ne([0:dlen-1]*dlen+[1:dlen]) = 1; % set diagonal elements = 1 if all(Ne(:)>0), Ne = []; end end if nargin<5, verbosity = 1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% initialize if size(base,1)==1, base = base'; end cid = unique(base(isfinite(base) & base~=0)); % cluster IDs nc = length(cid); uind = find(base==0); % unclustered points nu = length(uind); if nu==0, return; end % initial clusters clinds = cell(nc,1); for i=1:nc, clinds{i} = find(base==i); end clinds2 = cell(nu,1); for i=1:nu, clinds2{i} = uind(i); end % neighborhood function values if strcmp(cldist,'neighf') if isempty(sT), error('Cannot use neighf linkage.'); end q = som_unit_dists(sT).^2; r = sM.trainhist(end).radius_fin^2; if isnan(r) | isempty(r), r = 1; end switch sM.neigh, case 'bubble', q = (q <= r); case 'gaussian', q = exp(-q/(2*r)); case 'cutgauss', q = exp(-q/(2*r)) .* (q <= r); case 'ep', q = (1-q/r) .* (q <= r); end end % distance of each cluster to the unclustered points if any(strcmp(cldist,{'single','average','complete','neighf'})), M = som_mdist(M,2,mask,Ne); end Cd = som_cldist(M,clinds,clinds2,cldist,q,mask); % check out from Ne which of the clusters are not connected if ~isempty(Ne) & any(strcmp(cldist,{'centroid','ward'})), Clconn = sparse(nc,nu); for i=1:nc, for j=1:nu, Clconn(i,j) = any(any(Ne(clinds{i},uind(j)))); end, end Cd(Clconn==0) = Inf; else Clconn = []; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% action if verbosity, nu0 = nu; h = waitbar(1-nu/nu0,'Assigning unclustered points'); % tracking end while 1, % find closest unclustered point [dk,k] = min(Cd,[],2); % min distance from each unclustered point [d,c] = min(dk); % cluster to which it is assigned k = k(c); if ~isfinite(d), break; end % add k to cluster c base(uind(k)) = cid(c); clinds{c} = [clinds{c}; uind(k)]; % remove point k notk = [1:k-1,k+1:nu]; nu = nu-1; if nu<=0, break; end Cd = Cd(:,notk); uind = uind(notk); clinds2 = clinds2(notk); if ~isempty(Clconn), Clconn = Clconn(:,notk); end % update cluster distances to c Cd(c,:) = som_cldist(M,clinds(c),clinds2,cldist,q,mask); if ~isempty(Clconn), for j=1:nu, Clconn(c,j) = any(any(Ne(clinds{c},uind(j)))); end Cd(c,find(Clconn(c,:)==0)) = Inf; end if verbosity, waitbar(1-nu/nu0,h); end % tracking end if verbosity, close(h); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%