git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
lvq3.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
lvq3.m
Blame
History
Raw
function codebook = lvq3(codebook,data,rlen,alpha,win,epsilon) %LVQ3 trains codebook with LVQ3 -algorithm % % sM = lvq3(sM,D,rlen,alpha,win,epsilon) % % sM = lvq3(sM,sD,50*length(sM.codebook),0.05,0.2,0.3); % % Input and output arguments: % sM (struct) map struct, the class information must be % present on the first column of .labels field % D (struct) data struct, the class information must % be present on the first column of .labels field % rlen (scalar) running length % alpha (scalar) learning parameter, e.g. 0.05 % win (scalar) window width parameter, e.g. 0.25 % epsilon (scalar) relative learning parameter, e.g. 0.3 % % sM (struct) map struct, the trained codebook % % NOTE: does not take mask into account. % % For more help, try 'type lvq3', or check out online documentation. % See also LVQ1, SOM_SUPERVISED, SOM_SEQTRAIN. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % lvq3 % % PURPOSE % % Trains codebook with the LVQ3 -algorithm (described below). % % SYNTAX % % sM = lvq3(sM, data, rlen, alpha, win, epsilon) % % DESCRIPTION % % Trains codebook with the LVQ3 -algorithm. Codebook contains a number % of vectors (mi, i=1,2,...,n) and so does data (vectors xj, j=1,2,...k). % Both vector sets are classified: vectors may have a class (classes are % set to data- or map -structure's 'labels' -field. For each xj the two % closest codebookvectors mc1 and mc2 are searched (euclidean distances % d1 and d2). xj must fall into the zone of window. That happens if: % % min(d1/d2, d2/d1) > s, where s = (1-win) / (1+win). % % If xj belongs to the same class of one of the mc1 and mc1, codebook % is updated as follows (let mc1 belong to the same class as xj): % mc1(t+1) = mc1(t) + alpha * (xj(t) - mc1(t)) % mc2(t+1) = mc2(t) - alpha * (xj(t) - mc2(t)) % If both mc1 and mc2 belong to the same class as xj, codebook is % updated as follows: % mc1(t+1) = mc1(t) + epsilon * alpha * (xj(t) - mc1(t)) % mc2(t+1) = mc2(t) + epsilon * alpha * (xj(t) - mc2(t)) % Otherwise updating is not performed. % % Argument 'rlen' tells how many times training -sequence is performed. % % Argument 'alpha' is recommended to be smaller than 0.1 and argument % 'epsilon' should be between 0.1 and 0.5. % % NOTE: does not take mask into account. % % REFERENCES % % Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, % Berlin, 1995, pp. 181-182. % % See also LVQ_PAK from http://www.cis.hut.fi/research/som_lvq_pak.shtml % % REQUIRED INPUT ARGUMENTS % % sM The data to be trained. % (struct) A map struct. % % data The data to use in training. % (struct) A data struct. % % rlen (integer) Running length of LVQ3 -algorithm. % % alpha (float) Learning rate used in training, e.g. 0.05 % % win (float) Window length, e.g. 0.25 % % epsilon (float) Relative learning parameter, e.g. 0.3 % % OUTPUT ARGUMENTS % % sM Trained data. % (struct) A map struct. % % EXAMPLE % % lab = unique(sD.labels(:,1)); % different classes % mu = length(lab)*5; % 5 prototypes for each % sM = som_randinit(sD,'msize',[mu 1]); % initial prototypes % sM.labels = [lab;lab;lab;lab;lab]; % their classes % sM = lvq1(sM,sD,50*mu,0.05); % use LVQ1 to adjust % % the prototypes % sM = lvq3(sM,sD,50*mu,0.05,0.2,0.3); % then use LVQ3 % % SEE ALSO % % lvq1 Use LVQ1 algorithm for training. % som_supervised Train SOM using supervised training. % som_seqtrain Train SOM with sequential algorithm. % Contributed to SOM Toolbox vs2, February 2nd, 2000 by Juha Parhankangas % Copyright (c) by Juha Parhankangas % http://www.cis.hut.fi/projects/somtoolbox/ % Juha Parhankangas 310100 juuso 020200 NOTFOUND = 1; cod = codebook.codebook; dat = data.data; c_class = codebook.labels(:,1); d_class = data.labels(:,1); s = (1-win)/(1+win); x = size(dat,1); y = size(cod,2); c_class=class2num(c_class); d_class=class2num(d_class); ONES=ones(size(cod,1),1); for t=1:rlen fprintf('\rTraining round: %d/%d',t,rlen); tmp = NaN*ones(x,y); for j=1:x flag = 0; mj = 0; mi = 0; no_NaN=find(~isnan(dat(j,:))); di=sqrt(sum([cod(:,no_NaN) - ONES*dat(j,no_NaN)].^2,2)); [foo, ind1] = min(di); di(ind1)=Inf; [foo,ind2] = min(di); %ind2=ind2+1; if d_class(j) & d_class(j)==c_class(ind1) mj = ind1; mi = ind2; if d_class(j)==c_class(ind2) flag = 1; end elseif d_class(j) & d_class(j)==c_class(ind2) mj = ind2; mi = ind1; if d_class(j)==c_class(ind1) flag = 1; end end if mj & mi if flag tmp([mj mi],:) = cod([mj mi],:) + epsilon*alpha*... (dat([j j],:) - cod([mj mi],:)); else tmp(mj,:) = cod(mj,:) + alpha * (dat(j,:)-cod(mj,:)); tmp(mi,:) = cod(mi,:) - alpha * (dat(j,:)-cod(mj,:)); end end end inds = find(~isnan(sum(tmp,2))); cod(inds,:) = tmp(inds,:); end fprintf(1,'\n'); sTrain = som_set('som_train','algorithm','lvq3',... 'data_name',data.name,... 'neigh','',... 'mask',ones(y,1),... 'radius_ini',NaN,... 'radius_fin',NaN,... 'alpha_ini',alpha,... 'alpha_type','constant',... 'trainlen',rlen,... 'time',datestr(now,0)); codebook.trainhist(end+1) = sTrain; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function nos = class2num(class) names = {}; nos = zeros(length(class),1); for i=1:length(class) if ~isempty(class{i}) & ~any(strcmp(class{i},names)) names=cat(1,names,class(i)); end end tmp_nos = (1:length(names))'; for i=1:length(class) if ~isempty(class{i}) nos(i,1) = find(strcmp(class{i},names)); end end