git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_eucdist2.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_eucdist2.m
Blame
History
Raw
function d=som_eucdist2(Data, Proto) %SOM_EUCDIST2 Calculates matrix of squared euclidean distances between set of vectors or map, data struct % % d=som_eucdist2(D, P) % % d=som_eucdist(sMap, sData); % d=som_eucdist(sData, sMap); % d=som_eucdist(sMap1, sMap2); % d=som_eucdist(datamatrix1, datamatrix2); % % Input and output arguments ([]'s are optional): % D (matrix) size Nxd % (struct) map or data struct % P (matrix) size Pxd % (struct) map or data struct % d (matrix) distance matrix of size NxP % % IMPORTANT % % * Calculates _squared_ euclidean distances % * Observe that the mask in the map struct is not taken into account while % calculating the euclidean distance % % See also KNN, PDIST. % Contributed to SOM Toolbox 2.0, October 29th, 2000 by Johan Himberg % Copyright (c) by Johan Himberg % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta Johan 291000 %% Init %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isstruct(Data); if isfield(Data,'type') & ischar(Data.type), ; else error('Invalid map/data struct?'); end switch Data.type case 'som_map' data=Data.codebook; case 'som_data' data=Data.data; end else % is already a matrix data=Data; end % Take prototype vectors from prototype struct if isstruct(Proto), if isfield(Proto,'type') & ischar(Proto.type), ; else error('Invalid map/data struct?'); end switch Proto.type case 'som_map' proto=Proto.codebook; case 'som_data' proto=Proto.data; end else % is already a matrix proto=Proto; end % Check that inputs are matrices if ~vis_valuetype(proto,{'nxm'}) | ~vis_valuetype(data,{'nxm'}), error('Prototype or data input not valid.') end % Record data&proto sizes and check their dims [N_data dim_data]=size(data); [N_proto dim_proto]=size(proto); if dim_proto ~= dim_data, error('Data and prototype vector dimension does not match.'); end % Calculate euclidean distances between classifiees and prototypes d=distance(data,proto); %%%% Classification %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function d=distance(X,Y); % Euclidean distance matrix between row vectors in X and Y U=~isnan(Y); Y(~U)=0; V=~isnan(X); X(~V)=0; d=abs(X.^2*U'+V*Y'.^2-2*X*Y');