git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_lininit.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_lininit.m
Blame
History
Raw
function sMap = som_lininit(D, varargin) %SOM_LININIT Initialize a Self-Organizing Map linearly. % % sMap = som_lininit(D, [[argID,] value, ...]) % % sMap = som_lininit(D); % sMap = som_lininit(D,sMap); % sMap = som_lininit(D,'munits',100,'hexa'); % % Input and output arguments ([]'s are optional): % D The training data. % (struct) data struct % (matrix) data matrix, size dlen x dim % [argID, (string) Parameters affecting the map topology are given % value] (varies) as argument ID - argument value pairs, listed below. % sMap (struct) map struct % % Here are the valid argument IDs and corresponding values. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % 'munits' (scalar) number of map units % 'msize' (vector) map size % 'lattice' *(string) map lattice: 'hexa' or 'rect' % 'shape' *(string) map shape: 'sheet', 'cyl' or 'toroid' % 'topol' *(struct) topology struct % 'som_topol','sTopol' = 'topol' % 'map' *(struct) map struct % 'som_map','sMap' = 'map' % % For more help, try 'type som_lininit' or check out online documentation. % See also SOM_MAP_STRUCT, SOM_RANDINIT, SOM_MAKE. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_lininit % % PURPOSE % % Initializes a SOM linearly along its greatest eigenvectors. % % SYNTAX % % sMap = som_lininit(D); % sMap = som_lininit(D,sMap); % sMap = som_lininit(D,'munits',100,'hexa'); % % DESCRIPTION % % Initializes a SOM linearly. If necessary, a map struct is created % first. The initialization is made by first calculating the eigenvalues % and eigenvectors of the training data. Then, the map is initialized % along the mdim greatest eigenvectors of the training data, where % mdim is the dimension of the map grid. % % REFERENCES % % Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, % Berlin, 1995, pp. 106-107. % % REQUIRED INPUT ARGUMENTS % % D The training data. % (struct) Data struct. If this is given, its '.comp_names' and % '.comp_norm' fields are copied to the map struct. % (matrix) data matrix, size dlen x dim % % OPTIONAL INPUT ARGUMENTS % % argID (string) Argument identifier string (see below). % value (varies) Value for the argument (see below). % % The optional arguments can be given as 'argID',value -pairs. If an % argument is given value multiple times, the last one is used. % % Here are the valid argument IDs and corresponding values. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % 'dlen' (scalar) length of the training data % 'data' (matrix) the training data % *(struct) the training data % 'munits' (scalar) number of map units % 'msize' (vector) map size % 'lattice' *(string) map lattice: 'hexa' or 'rect' % 'shape' *(string) map shape: 'sheet', 'cyl' or 'toroid' % 'topol' *(struct) topology struct % 'som_topol','sTopol' = 'topol' % 'map' *(struct) map struct % 'som_map','sMap' = 'map' % % OUTPUT ARGUMENTS % % sMap (struct) The initialized map struct. % % EXAMPLES % % sMap = som_lininit(D); % sMap = som_lininit(D,sMap); % sMap = som_lininit(D,'msize',[10 10]); % sMap = som_lininit(D,'munits',100,'rect'); % % SEE ALSO % % som_map_struct Create a map struct. % som_randinit Initialize a map with random values. % som_make Initialize and train self-organizing map. % Copyright (c) 1997-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 1.0beta ecco 100997 % Version 2.0beta 101199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% check arguments % data if isstruct(D), data_name = D.name; comp_names = D.comp_names; comp_norm = D.comp_norm; D = D.data; struct_mode = 1; else data_name = inputname(1); struct_mode = 0; end [dlen dim] = size(D); % varargin sMap = []; sTopol = som_topol_struct; sTopol.msize = 0; munits = NaN; i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, case 'munits', i=i+1; munits = varargin{i}; sTopol.msize = 0; case 'msize', i=i+1; sTopol.msize = varargin{i}; munits = prod(sTopol.msize); case 'lattice', i=i+1; sTopol.lattice = varargin{i}; case 'shape', i=i+1; sTopol.shape = varargin{i}; case {'som_topol','sTopol','topol'}, i=i+1; sTopol = varargin{i}; case {'som_map','sMap','map'}, i=i+1; sMap = varargin{i}; sTopol = sMap.topol; case {'hexa','rect'}, sTopol.lattice = varargin{i}; case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}.type, case 'som_topol', sTopol = varargin{i}; case 'som_map', sMap = varargin{i}; sTopol = sMap.topol; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_topol_struct) Ignoring invalid argument #' num2str(i)]); end i = i+1; end if length(sTopol.msize)==1, sTopol.msize = [sTopol.msize 1]; end if ~isempty(sMap), [munits dim2] = size(sMap.codebook); if dim2 ~= dim, error('Map and data must have the same dimension.'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% create map % map struct if ~isempty(sMap), sMap = som_set(sMap,'topol',sTopol); else if ~prod(sTopol.msize), if isnan(munits), sTopol = som_topol_struct('data',D,sTopol); else sTopol = som_topol_struct('data',D,'munits',munits,sTopol); end end sMap = som_map_struct(dim, sTopol); end if struct_mode, sMap = som_set(sMap,'comp_names',comp_names,'comp_norm',comp_norm); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% initialization % train struct sTrain = som_train_struct('algorithm','lininit'); sTrain = som_set(sTrain,'data_name',data_name); msize = sMap.topol.msize; mdim = length(msize); munits = prod(msize); [dlen dim] = size(D); if dlen<2, %if dlen==1, sMap.codebook = (sMap.codebook - 0.5)*diag(D); end error(['Linear map initialization requires at least two NaN-free' ... ' samples.']); return; end % compute principle components if dim > 1 & sum(msize > 1) > 1, % calculate mdim largest eigenvalues and their corresponding % eigenvectors % autocorrelation matrix A = zeros(dim); me = zeros(1,dim); for i=1:dim, me(i) = mean(D(isfinite(D(:,i)),i)); D(:,i) = D(:,i) - me(i); end for i=1:dim, for j=i:dim, c = D(:,i).*D(:,j); c = c(isfinite(c)); A(i,j) = sum(c)/length(c); A(j,i) = A(i,j); end end % take mdim first eigenvectors with the greatest eigenvalues [V,S] = eig(A); eigval = diag(S); [y,ind] = sort(eigval); eigval = eigval(flipud(ind)); V = V(:,flipud(ind)); V = V(:,1:mdim); eigval = eigval(1:mdim); % normalize eigenvectors to unit length and multiply them by % corresponding (square-root-of-)eigenvalues for i=1:mdim, V(:,i) = (V(:,i) / norm(V(:,i))) * sqrt(eigval(i)); end else me = zeros(1,dim); V = zeros(1,dim); for i=1:dim, inds = find(~isnan(D(:,i))); me(i) = mean(D(inds,i),1); V(i) = std(D(inds,i),1); end end % initialize codebook vectors if dim>1, sMap.codebook = me(ones(munits,1),:); Coords = som_unit_coords(msize,'rect','sheet'); cox = Coords(:,1); Coords(:,1) = Coords(:,2); Coords(:,2) = cox; for i=1:mdim, ma = max(Coords(:,i)); mi = min(Coords(:,i)); if ma>mi, Coords(:,i) = (Coords(:,i)-mi)/(ma-mi); else Coords(:,i) = 0.5; end end Coords = (Coords-0.5)*2; for n = 1:munits, for d = 1:mdim, sMap.codebook(n,:) = sMap.codebook(n,:)+Coords(n,d)*V(:, d)'; end end else sMap.codebook = [0:(munits-1)]'/(munits-1)*(max(D)-min(D))+min(D); end % training struct sTrain = som_set(sTrain,'time',datestr(now,0)); sMap.trainhist = sTrain; return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%