git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
a37f178
Branches
Tags
master
SVMCrossVal.git
private
main.m
added some batch files, workaround for NAN - Bug
Christoph Budziszewski
commited
a37f178
at 2009-04-23 16:48:20
main.m
Blame
History
Raw
function main(model,task,subtask) disp('RUN'); switch task case 'pre' preprocess(model,subtask); case 'decode' decode(model,subtask); case 'plot' decode_plot(model,subtask); end end % disp('all warnings OFF') % warn = warning('off','all'); function preprocess(model,task) % parse the GUI and pass parameters as structure timeLine = getTimeLineParams(model); subjects = getSubjectCellList(model); classDef = parseClassDef(model); mask = ['^' cell2mat(getImageFileMask(model)) '.*\.img$']; psthOpts = struct; psthOpts.colBias = getColumnBiasRemoveOption(model); psthOpts.psthNorm = getPsthNormalizationMethod(model); switch task case 'COORD' disp('COORD'); out = struct; out.header = struct; out.header.type = 'COORD'; out.header.timeline = timeLine; out.header.classDef = classDef; coordargs = struct; coordargs.subjects = subjects; coordargs.timeline = timeLine; coordargs.basedir = model.baseDir; coordargs.sessionList = 1:3; coordargs.eventList = classDef.eventMatrix; coordargs.coords = parseCoordinateTextField(model); coordargs.mask = mask; coordargs.psthOpts = psthOpts; out.subjectdata = runCoordTable(coordargs); case 'ROI' disp('ROI'); out = struct; out.header = struct; out.header.type = 'ROI'; out.header.timeline = timeLine; out.header.classDef = classDef; roiargs = struct; roiargs.subjects = subjects; roiargs.timeline = timeLine; roiargs.classes = classDef; roiargs.mask = mask; roiargs.basedir = model.baseDir; roiargs.sessionList = 1:3; roiargs.eventList = classDef.eventMatrix; roiargs.psthOpts = psthOpts; out.subjectdata = runROIImageMaskMode(roiargs); case 'FBS' disp('FSB'); out = struct; out.header = struct; out.header.type = 'FBS'; out.header.timeline = timeLine; out.header.classDef = classDef; out.subjectdata = fbs_load_mask(model.baseDir,subjects); if(size(subjects,2)>1) display(sprintf('No BATCH Support for Searchlight!')); return end fbsargs = struct; fbsargs.timeline = timeLine; fbsargs.classes = classDef; fbsargs.mask = mask; fbsargs.basedir = model.baseDir; fbsargs.sessionList = 1:3; fbsargs.eventList = classDef.eventMatrix; fbsargs.psthOpts = psthOpts; out.header.args = fbsargs; % no more preprocessing in this step! end assignin('base','preprocessedData',out); end function decode(model,task) preprocessedData = evalin('base','preprocessedData'); if(~(isa(preprocessedData,'struct'))) display('you need to preprocess some data before this step'); return end header = preprocessedData.header; header.frameShift = getFrameShiftParams(model); data = preprocessedData.subjectdata; switch task case 'SVM' disp('SVM'); svmopts = getSvmArgs(model,1); header.svmrnd = getSvmRnd(model); header.nantozero = 1; decode = calculateMultiSubjectDecodePerformance(header,data,svmopts); decode.header = header; assignin('base','decode',decode); case 'XSVM' disp('XSVM') svmopts = getSvmArgs(model,0); header.svmrnd = getSvmRnd(model); header.nantozero = 1; decode = xsvm_subject_loop(header,data,svmopts); decode.header = header; assignin('base','decode',decode); case 'SOM' display('SOM'); somopts.rnd = 1; somopts.nantozero = 1; somopts.size = [3 3]; somopts.lattice = 'rect'; somopts.nfold = 6; decode = som_subject_batch(header,data,somopts); decode.header = header; assignin('base','decode',decode); case 'XSOM' display('XSOM'); somopts.rnd = 1; somopts.nantozero = 1; somopts.size = [3 3]; somopts.lattice = 'rect'; decode = som_xsubject_performance(header,data,somopts); decode.header = header; assignin('base','decode',decode); case 'FBS' display('FBS'); fbsargs.svmopts = getSvmArgs(model,1); header.svmrnd = getSvmRnd(model); fbsargs.radius = getSearchlightRadius(model); runFBSImageMaskMode(header,data,fbsargs); end % disp('warings restored'); % warning('on',warn); end function decode_plot(model,type) decode = evalin('base','decode'); preprocessed = evalin('base','preprocessedData'); plotDecodePerformance(type,decode,preprocessed.subjectdata); end