git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
87b08fd
Branches
Tags
master
SVMCrossVal.git
NIFTI_20090325
affine.m
searchlight ready. missing nifti-image-write support. added timing to FBS
Christoph Budziszewski
commited
87b08fd
at 2009-03-30 17:54:25
affine.m
Blame
History
Raw
% Using 2D or 3D affine matrix to rotate, translate, scale, reflect and % shear a 2D image or 3D volume. 2D image is represented by a 2D matrix, % 3D volume is represented by a 3D matrix, and data type can be real % integer or floating-point. % % You may notice that MATLAB has a function called 'imtransform.m' for % 2D spatial transformation. However, keep in mind that 'imtransform.m' % assumes y for the 1st dimension, and x for the 2nd dimension. They are % equivalent otherwise. % % In addition, if you adjust the 'new_elem_size' parameter, this 'affine.m' % is equivalent to 'interp2.m' for 2D image, and equivalent to 'interp3.m' % for 3D volume. % % Usage: [new_img new_M] = ... % affine(old_img, old_M, [new_elem_size], [verbose], [bg], [method]); % % old_img - original 2D image or 3D volume. We assume x for the 1st % dimension, y for the 2nd dimension, and z for the 3rd % dimension. % % old_M - a 3x3 2D affine matrix for 2D image, or a 4x4 3D affine % matrix for 3D volume. We assume x for the 1st dimension, % y for the 2nd dimension, and z for the 3rd dimension. % % new_elem_size (optional) - size of voxel along x y z direction for % a transformed 3D volume, or size of pixel along x y for % a transformed 2D image. We assume x for the 1st dimension % y for the 2nd dimension, and z for the 3rd dimension. % 'new_elem_size' is 1 if it is default or empty. % % You can increase its value to decrease the resampling rate, % and make the 2D image or 3D volume more coarse. It works % just like 'interp3'. % % verbose (optional) - 1, 0 % 1: show transforming progress in percentage % 2: progress will not be displayed % 'verbose' is 1 if it is default or empty. % % bg (optional) - background voxel intensity in any extra corner that % is caused by the interpolation. 0 in most cases. If it is % default or empty, 'bg' will be the average of two corner % voxel intensities in original data. % % method (optional) - 1, 2, or 3 % 1: for Trilinear interpolation % 2: for Nearest Neighbor interpolation % 3: for Fischer's Bresenham interpolation % 'method' is 1 if it is default or empty. % % new_img - transformed 2D image or 3D volume % % new_M - transformed affine matrix % % Example 1 (3D rotation): % load mri.mat; old_img = double(squeeze(D)); % old_M = [0.88 0.5 3 -90; -0.5 0.88 3 -126; 0 0 2 -72; 0 0 0 1]; % new_img = affine(old_img, old_M, 2); % [x y z] = meshgrid(1:128,1:128,1:27); % sz = size(new_img); % [x1 y1 z1] = meshgrid(1:sz(2),1:sz(1),1:sz(3)); % figure; slice(x, y, z, old_img, 64, 64, 13.5); % shading flat; colormap(map); view(-66, 66); % figure; slice(x1, y1, z1, new_img, sz(1)/2, sz(2)/2, sz(3)/2); % shading flat; colormap(map); view(-66, 66); % % Example 2 (2D interpolation): % load mri.mat; old_img=D(:,:,1,13)'; % old_M = [1 0 0; 0 1 0; 0 0 1]; % new_img = affine(old_img, old_M, [.2 .4]); % figure; image(old_img); colormap(map); % figure; image(new_img); colormap(map); % % This program is inspired by: % SPM5 Software from Wellcome Trust Centre for Neuroimaging % http://www.fil.ion.ucl.ac.uk/spm/software % Fischer, J., A. del Rio (2004). A Fast Method for Applying Rigid % Transformations to Volume Data, WSCG2004 Conference. % http://wscg.zcu.cz/wscg2004/Papers_2004_Short/M19.pdf % % - Jimmy Shen (jimmy@rotman-baycrest.on.ca) % function [new_img, new_M] = affine(old_img, old_M, new_elem_size, verbose, bg, method) if ~exist('old_img','var') | ~exist('old_M','var') error('Usage: [new_img new_M] = affine(old_img, old_M, [new_elem_size], [verbose], [bg], [method]);'); end if ndims(old_img) == 3 if ~isequal(size(old_M),[4 4]) error('old_M should be a 4x4 affine matrix for 3D volume.'); end elseif ndims(old_img) == 2 if ~isequal(size(old_M),[3 3]) error('old_M should be a 3x3 affine matrix for 2D image.'); end else error('old_img should be either 2D image or 3D volume.'); end if ~exist('new_elem_size','var') | isempty(new_elem_size) new_elem_size = [1 1 1]; elseif length(new_elem_size) < 2 new_elem_size = new_elem_size(1)*ones(1,3); elseif length(new_elem_size) < 3 new_elem_size = [new_elem_size(:); 1]'; end if ~exist('method','var') | isempty(method) method = 1; elseif ~exist('bresenham_line3d.m','file') & method == 3 error([char(10) char(10) 'Please download 3D Bresenham''s line generation program from:' char(10) char(10) 'http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=21057' char(10) char(10) 'to test Fischer''s Bresenham interpolation method.' char(10) char(10)]); end % Make compatible to MATLAB earlier than version 7 (R14), which % can only perform arithmetic on double data type % old_img = double(old_img); old_dim = size(old_img); if ~exist('bg','var') | isempty(bg) bg = mean([old_img(1) old_img(end)]); end if ~exist('verbose','var') | isempty(verbose) verbose = 1; end if ndims(old_img) == 2 old_dim(3) = 1; old_M = old_M(:, [1 2 3 3]); old_M = old_M([1 2 3 3], :); old_M(3,:) = [0 0 1 0]; old_M(:,3) = [0 0 1 0]'; end % Vertices of img in voxel % XYZvox = [ 1 1 1 1 1 old_dim(3) 1 old_dim(2) 1 1 old_dim(2) old_dim(3) old_dim(1) 1 1 old_dim(1) 1 old_dim(3) old_dim(1) old_dim(2) 1 old_dim(1) old_dim(2) old_dim(3) ]'; old_R = old_M(1:3,1:3); old_T = old_M(1:3,4); % Vertices of img in millimeter % XYZmm = old_R*(XYZvox-1) + repmat(old_T, [1, 8]); % Make scale of new_M according to new_elem_size % new_M = diag([new_elem_size 1]); % Make translation so minimum vertex is moved to [1,1,1] % new_M(1:3,4) = round( min(XYZmm,[],2) ); % New dimensions will be the maximum vertices in XYZ direction (dim_vox) % i.e. compute dim_vox via dim_mm = R*(dim_vox-1)+T % where, dim_mm = round(max(XYZmm,[],2)); % new_dim = ceil(new_M(1:3,1:3) \ ( round(max(XYZmm,[],2))-new_M(1:3,4) )+1)'; % Initialize new_img with new_dim % new_img = zeros(new_dim(1:3)); % Mask out any changes from Z axis of transformed volume, since we % will traverse it voxel by voxel below. We will only apply unit % increment of mask_Z(3,4) to simulate the cursor movement % % i.e. we will use mask_Z * new_XYZvox to replace new_XYZvox % mask_Z = diag(ones(1,4)); mask_Z(3,3) = 0; % It will be easier to do the interpolation if we invert the process % by not traversing the original volume. Instead, we traverse the % transformed volume, and backproject each voxel in the transformed % volume back into the original volume. If the backprojected voxel % in original volume is within its boundary, the intensity of that % voxel can be used by the cursor location in the transformed volume. % % First, we traverse along Z axis of transformed volume voxel by voxel % for z = 1:new_dim(3) if verbose & ~mod(z,10) fprintf('%.2f percent is done.\n', 100*z/new_dim(3)); end % We need to find out the mapping from voxel in the transformed % volume (new_XYZvox) to voxel in the original volume (old_XYZvox) % % The following equation works, because they all equal to XYZmm: % new_R*(new_XYZvox-1) + new_T == old_R*(old_XYZvox-1) + old_T % % We can use modified new_M1 & old_M1 to substitute new_M & old_M % new_M1 * new_XYZvox == old_M1 * old_XYZvox % % where: M1 = M; M1(:,4) = M(:,4) - sum(M(:,1:3),2); % and: M(:,4) == [T; 1] == sum(M1,2) % % Therefore: old_XYZvox = old_M1 \ new_M1 * new_XYZvox; % % Since we are traverse Z axis, and new_XYZvox is replaced % by mask_Z * new_XYZvox, the above formula can be rewritten % as: old_XYZvox = old_M1 \ new_M1 * mask_Z * new_XYZvox; % % i.e. we find the mapping from new_XYZvox to old_XYZvox: % M = old_M1 \ new_M1 * mask_Z; % % First, compute modified old_M1 & new_M1 % old_M1 = old_M; old_M1(:,4) = old_M(:,4) - sum(old_M(:,1:3),2); new_M1 = new_M; new_M1(:,4) = new_M(:,4) - sum(new_M(:,1:3),2); % Then, apply unit increment of mask_Z(3,4) to simulate the % cursor movement % mask_Z(3,4) = z; % Here is the mapping from new_XYZvox to old_XYZvox % M = old_M1 \ new_M1 * mask_Z; switch method case 1 new_img(:,:,z) = trilinear(old_img, new_dim, old_dim, M, bg); case 2 new_img(:,:,z) = nearest_neighbor(old_img, new_dim, old_dim, M, bg); case 3 new_img(:,:,z) = bresenham(old_img, new_dim, old_dim, M, bg); end end; % for z if ndims(old_img) == 2 new_M(3,:) = []; new_M(:,3) = []; end return; % affine %-------------------------------------------------------------------- function img_slice = trilinear(img, dim1, dim2, M, bg) img_slice = zeros(dim1(1:2)); TINY = 5e-2; % tolerance % Dimension of transformed 3D volume % xdim1 = dim1(1); ydim1 = dim1(2); % Dimension of original 3D volume % xdim2 = dim2(1); ydim2 = dim2(2); zdim2 = dim2(3); % initialize new_Y accumulation % Y2X = 0; Y2Y = 0; Y2Z = 0; for y = 1:ydim1 % increment of new_Y accumulation % Y2X = Y2X + M(1,2); % new_Y to old_X Y2Y = Y2Y + M(2,2); % new_Y to old_Y Y2Z = Y2Z + M(3,2); % new_Y to old_Z % backproject new_Y accumulation and translation to old_XYZ % old_X = Y2X + M(1,4); old_Y = Y2Y + M(2,4); old_Z = Y2Z + M(3,4); for x = 1:xdim1 % accumulate the increment of new_X, and apply it % to the backprojected old_XYZ % old_X = M(1,1) + old_X ; old_Y = M(2,1) + old_Y ; old_Z = M(3,1) + old_Z ; % within boundary of original image % if ( old_X > 1-TINY & old_X < xdim2+TINY & ... old_Y > 1-TINY & old_Y < ydim2+TINY & ... old_Z > 1-TINY & old_Z < zdim2+TINY ) % Calculate distance of old_XYZ to its neighbors for % weighted intensity average % dx = old_X - floor(old_X); dy = old_Y - floor(old_Y); dz = old_Z - floor(old_Z); x000 = floor(old_X); x100 = x000 + 1; if floor(old_X) < 1 x000 = 1; x100 = x000; elseif floor(old_X) > xdim2-1 x000 = xdim2; x100 = x000; end x010 = x000; x001 = x000; x011 = x000; x110 = x100; x101 = x100; x111 = x100; y000 = floor(old_Y); y010 = y000 + 1; if floor(old_Y) < 1 y000 = 1; y100 = y000; elseif floor(old_Y) > ydim2-1 y000 = ydim2; y010 = y000; end y100 = y000; y001 = y000; y101 = y000; y110 = y010; y011 = y010; y111 = y010; z000 = floor(old_Z); z001 = z000 + 1; if floor(old_Z) < 1 z000 = 1; z001 = z000; elseif floor(old_Z) > zdim2-1 z000 = zdim2; z001 = z000; end z100 = z000; z010 = z000; z110 = z000; z101 = z001; z011 = z001; z111 = z001; x010 = x000; x001 = x000; x011 = x000; x110 = x100; x101 = x100; x111 = x100; v000 = double(img(x000, y000, z000)); v010 = double(img(x010, y010, z010)); v001 = double(img(x001, y001, z001)); v011 = double(img(x011, y011, z011)); v100 = double(img(x100, y100, z100)); v110 = double(img(x110, y110, z110)); v101 = double(img(x101, y101, z101)); v111 = double(img(x111, y111, z111)); img_slice(x,y) = v000*(1-dx)*(1-dy)*(1-dz) + ... v010*(1-dx)*dy*(1-dz) + ... v001*(1-dx)*(1-dy)*dz + ... v011*(1-dx)*dy*dz + ... v100*dx*(1-dy)*(1-dz) + ... v110*dx*dy*(1-dz) + ... v101*dx*(1-dy)*dz + ... v111*dx*dy*dz; else img_slice(x,y) = bg; end % if boundary end % for x end % for y return; % trilinear %-------------------------------------------------------------------- function img_slice = nearest_neighbor(img, dim1, dim2, M, bg) img_slice = zeros(dim1(1:2)); % Dimension of transformed 3D volume % xdim1 = dim1(1); ydim1 = dim1(2); % Dimension of original 3D volume % xdim2 = dim2(1); ydim2 = dim2(2); zdim2 = dim2(3); % initialize new_Y accumulation % Y2X = 0; Y2Y = 0; Y2Z = 0; for y = 1:ydim1 % increment of new_Y accumulation % Y2X = Y2X + M(1,2); % new_Y to old_X Y2Y = Y2Y + M(2,2); % new_Y to old_Y Y2Z = Y2Z + M(3,2); % new_Y to old_Z % backproject new_Y accumulation and translation to old_XYZ % old_X = Y2X + M(1,4); old_Y = Y2Y + M(2,4); old_Z = Y2Z + M(3,4); for x = 1:xdim1 % accumulate the increment of new_X and apply it % to the backprojected old_XYZ % old_X = M(1,1) + old_X ; old_Y = M(2,1) + old_Y ; old_Z = M(3,1) + old_Z ; xi = round(old_X); yi = round(old_Y); zi = round(old_Z); % within boundary of original image % if ( xi >= 1 & xi <= xdim2 & ... yi >= 1 & yi <= ydim2 & ... zi >= 1 & zi <= zdim2 ) img_slice(x,y) = img(xi,yi,zi); else img_slice(x,y) = bg; end % if boundary end % for x end % for y return; % nearest_neighbor %-------------------------------------------------------------------- function img_slice = bresenham(img, dim1, dim2, M, bg) img_slice = zeros(dim1(1:2)); % Dimension of transformed 3D volume % xdim1 = dim1(1); ydim1 = dim1(2); % Dimension of original 3D volume % xdim2 = dim2(1); ydim2 = dim2(2); zdim2 = dim2(3); for y = 1:ydim1 start_old_XYZ = round(M*[0 y 0 1]'); end_old_XYZ = round(M*[xdim1 y 0 1]'); [X Y Z] = bresenham_line3d(start_old_XYZ, end_old_XYZ); % line error correction % % del = end_old_XYZ - start_old_XYZ; % del_dom = max(del); % idx_dom = find(del==del_dom); % idx_dom = idx_dom(1); % idx_other = [1 2 3]; % idx_other(idx_dom) = []; %del_x1 = del(idx_other(1)); % del_x2 = del(idx_other(2)); % line_slope = sqrt((del_x1/del_dom)^2 + (del_x2/del_dom)^2 + 1); % line_error = line_slope - 1; % line error correction removed because it is too slow for x = 1:xdim1 % rescale ratio % i = round(x * length(X) / xdim1); if i < 1 i = 1; elseif i > length(X) i = length(X); end xi = X(i); yi = Y(i); zi = Z(i); % within boundary of the old XYZ space % if ( xi >= 1 & xi <= xdim2 & ... yi >= 1 & yi <= ydim2 & ... zi >= 1 & zi <= zdim2 ) img_slice(x,y) = img(xi,yi,zi); % if line_error > 1 % x = x + 1; % if x <= xdim1 % img_slice(x,y) = img(xi,yi,zi); % line_error = line_slope - 1; % end % end % if line_error % line error correction removed because it is too slow else img_slice(x,y) = bg; end % if boundary end % for x end % for y return; % bresenham