git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_neighf.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_neighf.m
Blame
History
Raw
function H = som_neighf(sMap,radius,neigh,ntype) %SOM_NEIGHF Return neighborhood function values. % % H = som_neighf(sMap,[radius],[neigh],[ntype]); % % Input and output arguments ([]'s are optional): % sMap (struct) map or topology struct % [radius] (scalar) neighborhood radius (by default, the last used value % in sMap.trainhist is used, or 1 if that is unavailable) % [neigh] (string) neighborhood function type (by default, ..., or % 'gaussian' if that is unavailable) % [ntype] (string) 'normal' (default), 'probability' or 'mirror' % % H (matrix) [munits x munits] neighborhood function values from % each map unit to each other map unit % % For more help, try 'type som_batchtrain' or check out online documentation. % See also SOM_MAKE, SOM_SEQTRAIN, SOM_TRAIN_STRUCT. % Copyright (c) 1997-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Check arguments % defaults rdefault = 1; ndefault = 'gaussian'; tdefault = 'normal'; % map switch sMap.type, case 'som_map', sTopol = sMap.topol; sTrain = sMap.trainhist(end); if isempty(sTrain.radius_fin) | isnan(sTrain.radius_fin), rdefault = 1; else rdefault = sTrain.radius_fin; end if ~isempty(sTrain.neigh) & ~isnan(sTrain.neigh), ndefault = sTrain.neigh; end case 'som_topol', sTopol = sMap; end munits = prod(sTopol.msize); % other parameters if nargin<2 | isempty(radius), radius = rdefault; end if nargin<3 | isempty(neigh), neigh = ndefault; end if nargin<4 | isempty(ntype), ntype = tdefault; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% initialize % basic neighborhood Ud = som_unit_dists(sTopol); Ud = Ud.^2; radius = radius.^2; if radius==0, radius = eps; end % zero neighborhood radius may cause div-by-zero error switch ntype, case 'normal', H = neighf(neigh,Ud,radius); case 'probability', H = neighf(neigh,Ud,radius); for i=1:munits, H(i,:) = H(i,:)/sum(H(i,:)); end case 'mirror', % only works for 2-dim grid!!! H = zeros(munits,munits); Co = som_unit_coords(sTopol); for i=-1:1, for j=-1:1, Ud = gridmirrordist(Co,i,j); H = H + neighf(neigh,Ud,radius); end end end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% subfunctions function H = neighf(neigh,Ud,radius) switch neigh, case 'bubble', H = (Ud<=radius); case 'gaussian', H = exp(-Ud/(2*radius)); case 'cutgauss', H = exp(-Ud/(2*radius)) .* (Ud<=radius); case 'ep', H = (1-Ud/radius) .* (Ud<=radius); end return; function Ud = gridmirrordist(Co,mirrorx,mirrory) [munits,mdim] = size(Co); if mdim>2, error('Mirrored neighborhood only works for 2-dim map grids.'); end % width and height of the grid dx = max(Co(:,1))-min(Co(:,1)); dy = max(Co(:,2))-min(Co(:,2)); % calculate distance from each location to each other location Ud = zeros(munits,munits); for i=1:munits, inds = [i:munits]; coi = Co(i,:); % take hexagonal shift into account coi(1) = coi(1)*(1-2*(mirrorx~=0)) + 2*dx*(mirrorx==1); % +mirrorx * step coi(2) = coi(2)*(1-2*(mirrory~=0)) + 2*dy*(mirrory==1); % +mirrory * step Dco = (Co(inds,:) - coi(ones(munits-i+1,1),:))'; Ud(i,inds) = sqrt(sum(Dco.^2)); Ud(inds,i) = Ud(i,inds)'; end return;