git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_stats.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_stats.m
Blame
History
Raw
function csS = som_stats(D,varargin) %SOM_STATS Calculate descriptive statistics for the data. % % csS = som_stats(D,[sort]); % % csS = som_stats(D); % csS = som_stats(D,'nosort'); % som_table_print(som_stats_table(csS)) % % Input and output arguments ([]'s are optional): % D (matrix) a matrix, size dlen x dim % (struct) data or map struct % [sort] (string) 'sort' (default) or 'nosort' % If 'nosort' is specified, the data is not % sorted, and therefore the values of % nunique, uvalues, ucount, fvalues, fcount, and tiles fields % are not calculated. This may be useful if % there is a very large amount of data, and % one wants to reduce calculation time. % % csS (cell array) size dim x 1, of statistics structs with % the following fields % .type (string) 'som_stat' % .name (string) name of the variable % .normalization (struct array) variable normalization (see SOM_NORMALIZE) % .ntotal (scalar) total number of values % .nvalid (scalar) number of valid values (not Inf or NaN) % .min (scalar) minimum value % .max (scalar) maximum value % .mean (scalar) mean value (not Inf or NaN) % .std (scalar) standard deviation (not Inf or NaN) % .nunique (scalar) number of unique values % .mfvalue (vector) most frequent value % .mfcount (vector) number of occurances of most frequent value % .values (vector) at most MAXDISCRETE (see below) sample values % .counts (vector) number of occurances for each sampled value % .tiles (vector) NT-tile values, for example % NT=4 for quartiles: 25%, 50% and 75% % NT=100 for percentiles: 1%, 2%, ... and 99% % .hist (struct) histogram struct with the following fields % .type (string) 'som_hist' % .bins (vector) histogram bin centers % .counts (vector) count of values in each bin % .binlabels (cellstr) labels for the bins (denormalized bin % center values) % .binlabels2 (cellstr) labels for the bins (denormalized bin % edge values, e.g. '[1.4,2.5[' % % Constants: % MAXDISCRETE = 10 % NT = 10 % % See also SOM_STATS_PLOT, SOM_STATS_TABLE, SOM_TABLE_PRINT, SOM_STATS_REPORT. % Contributed to SOM Toolbox 2.0, December 31st, 2001 by Juha Vesanto % Copyright (c) by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 311201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 %% arguments % default values nosort = 0; nbins = 10; maxdiscrete = 20; ntiles = 10; % first argument if isstruct(D), switch D.type, case 'som_map', cn = D.comp_names; sN = D.comp_norm; D = D.codebook; case 'som_data', cn = D.comp_names; sN = D.comp_norm; D = D.data; otherwise, error('Invalid first argument') end else cn = cell(size(D,2),1); cn(:) = {'Variable'}; for i=1:length(cn), cn{i} = sprintf('%s%d',cn{i},i); end sN = cell(size(D,2),1); end [dlen dim] = size(D); % other arguments if length(varargin)>0, if strcmp(varargin{1},'nosort'), nosort = 1; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 %% action sStat = struct('type','som_stat','name','','normalization',[],... 'min',NaN,'max',NaN,'mean',NaN,'std',NaN,... 'nunique',NaN,'values',[],'counts',[],'mfvalue',NaN,'mfcount',NaN,'tiles',[],... 'ntotal',dlen,'nvalid',NaN,'hist',[]); csS = cell(0); for i=1:dim, sS = sStat; sS.name = cn{i}; sS.normalization = sN{i}; x = D(:,i); x(find(~isfinite(x))) = []; % basic descriptive statistics sS.nvalid = length(x); if length(x), sS.min = min(x); sS.max = max(x); sS.mean = mean(x); sS.std = std(x); bins = []; if ~nosort, xsorted = sort(x); % number of unique values repeated = (xsorted(1:end-1)==xsorted(2:end)); j = [1; find(~repeated)+1]; xunique = xsorted(j); sS.nunique = length(xunique); ucount = diff([j; length(xsorted)+1]); % most frequent value [fcount,j] = max(ucount); sS.mfvalue = xunique(j); sS.mfcount = fcount; % -tiles (k*100/ntiles % of values, k=1..) pickind = round(linspace(1,sS.nvalid,ntiles+1)); pickind = pickind(2:end-1); sS.tiles = xsorted(pickind); if sS.nunique <= sS.nvalid/2, % unique values sS.values = xunique; sS.counts = ucount; bins = sS.values; else % just maxdiscrete values, evenly picked pickind = round(linspace(1,sS.nunique,maxdiscrete)); sS.values = xunique(pickind); sS.counts = ucount(pickind); %% OPTION 2: maxdiscrete most frequent values %[v,j] = sort(ucount); %pickind = j(1:maxdiscrete); %sS.values = xunique(pickind); %sS.counts = ucount(pickind); % OPTION 3: representative values - calculated using k-means %[y,bm,qe] = kmeans(x,maxdiscrete); %sS.values = y; %sS.counts = full(sum(sparse(bm,1:length(bm),1,maxdiscrete,length(bm)),2)); end end if isempty(bins), bins = linspace(sS.min,sS.max,nbins+1); bins = (bins(1:end-1)+bins(2:end))/2; end sS.hist = som_hist(x,bins,sS.normalization); else sS.hist = som_hist(x,0); end csS{end+1} = sS; end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 %% subfunctions function sH = som_hist(x,bins,sN) binlabels = []; binlabels2 = []; if nargin<2 | isempty(bins) | isnan(bins), bins = linspace(min(x),max(x),10); end if isstruct(bins), bins = sH.bins; binlabels = sH.binlabels; binlabels2 = sH.binlabels2; end if nargin<3, sN = []; end sH = struct('type','som_hist','bins',bins,'counts',[],... 'binlabels',binlabels,'binlabels2',binlabels2); if length(bins)==1, sH.counts = [length(x)]; edges = bins; elseif length(x), edges = (bins(1:end-1)+bins(2:end))/2; counts = histc(x,[-Inf; edges(:); Inf]); sH.counts = counts(1:end-1); end if isempty(sH.binlabels), b = som_denormalize(bins(:),sN); sH.binlabels = numtostring(b,4); end if isempty(sH.binlabels2), if length(edges)==1, sH.binlabels2 = numtostring(som_denormalize(edges,sN),2); if length(bins)>1, sH.binlabels2 = sH.binlabels2([1 1]); sH.binlabels2{1} = [']' sH.binlabels2{1} '[']; sH.binlabels2{2} = ['[' sH.binlabels2{2} '[']; end else if size(edges,1)==1, edges = edges'; end bstr = numtostring(som_denormalize(edges,sN),4); sH.binlabels2 = bstr([1:end end]); sH.binlabels2{1} = [bstr{1} '[']; for i=2:length(sH.binlabels2)-1, sH.binlabels2{i} = ['[' bstr{i-1} ',' bstr{i} '[']; end sH.binlabels2{end} = ['[' bstr{end}]; end end if 0, if length(bins)==1, sH.binlabels2 = {'constant'}; else ntiles = 10; plim = [1:ntiles-1] / ntiles; cp = cumsum(sH.counts)/sum(sH.counts); [dummy,i] = histc(cp,[-Inf plim Inf]); l2 = cell(length(bins),1); for j=1:length(bins), l2{j} = sprintf('Q%d',i(j)); end if i(1) > 1, l2{1} = ['...' l2{1}]; end k = 0; for j=2:length(bins), if i(j)==i(j-1), if k==0, l2{j-1} = [l2{j-1} '.1']; k = 1; end k = k + 1; l2{j} = [l2{j} '.' num2str(k)]; else k = 0; end end if i(end) < ntiles, l2{end} = [l2{end} '...']; end sH.binlabels2 = l2; end end return; function vstr = numtostring(v,d) r = max(v)-min(v); if r==0, r=1; end nearzero = (abs(v)/r < 10.^-d); i1 = find(v > 0 & nearzero); i2 = find(v < 0 & nearzero); vstr = strrep(cellstr(num2str(v,d)),' ',''); vstr(i1) = {'0.0'}; vstr(i2) = {'-0.0'}; return;