git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_clset.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_clset.m
Blame
History
Raw
function [sC,old2new,newi] = som_clset(sC,action,par1,par2) % SOM_CLSET Create and/or set values in the som_clustering struct. % % first argument % sC (struct) a som_clustering struct % Z (matrix) size nb-1 x 3, as given by LINKAGE function % base (vector) size dlen x 1, a partitioning of the data % % actions % 'remove' removes the indicated clusters (par1: vector) % 'add' add a cluster by making a combination of the indicated % clusters (par1: vector) % %'move' moves a child cluster (par1: scalar) from a parent to another % % (par2: vector 1 x 2) % 'merge' like 'add', followed by removing the indicated clusters (par1: vector) % %'split' the indicated cluster (par1: scalar) is partitioned into indicated % % parts (par2: vector), which are then added, while the indicated cluster % % (par1) is removed % 'coord' sets the coordinates of base clusters (par1: matrix nb x *), and % recalculates coordinates of the derived clusters (by averaging base cluster % coordinates) % 'color' sets the colors of base clusters (par1: matrix nb x 3), and recalculates % colors of the derived clusters (as averages of base cluster colors) % % sC % .type (string) 'som_clustering' % .name (string) Identifier for the clustering. % .nb (scalar) Number of base clusters in the clustering. % .base (vector) Size dlen x 1, the basic groups of data % forming the base clusters, e.g. as a result % of partitive clustering. Allowed values are % 1:nb indicating the base cluster % to which the data belongs to. % NaN indicating that the data has % been ignored in the clustering % .nc (scalar) Number of clusters in the clustering (nb + derived clusters). % .children (cellarray) size nc x 1, each cell gives the list of indeces % of child clusters for the cluster % .parent (vector) size nc x 1, the index of parent of each cluster % (or zero if the cluster does not have a parent) % .coord (matrix) size nc x *, visualization coordinates for each cluster % By default the coordinates are set so that % the base clusters are ordered on a line, and the % position of each combined cluster is average of % the base clusters that constitute it. % .color (matrix) size nc x 3, color for each cluster. % By default the colors are set so that the % base clusters are ordered on a line, % and then colors are assigned from the 'hsv' % colormap to the base clusters. The color % of each combined cluster is average as above. % .cldist (string) Default cluster distance function. inew = []; if isstruct(sC), % it should be a som_clustering struct old2new = [1:sC.nc]; elseif size(sC,2)==3, % assume it is a cluster hierarchy matrix Z sC = Z2sC(sC); old2new = [1:sC.nc]; else % assume it is a partitioning vector base = sC; u = unique(base(isfinite(base))); old2new = sparse(u,1,1:length(u)); base = old2new(base); sC = part2sC(base); end switch action, case 'remove', for i=1:length(par1), [sC,o2n] = removecluster(sC,old2new(par1(i))); old2new = o2n(old2new); end case 'add', [sC,old2new,inew] = addmergedcluster(sC,par1); case 'move', % not implemented yet case 'split', % not implemented yet case 'merge', [sC,old2new,inew] = addmergedcluster(sC,par1); for i=1:length(par1), [sC,o2n] = removecluster(sC,old2new(par1(i))); old2new = o2n(old2new); end case 'color', sC.color = derivative_average(sC,par1); case 'coord', sC.coord = derivative_average(sC,par1); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% subfunctions function sC = clstruct(nb,nc) sC = struct('type','som_clustering',... 'name','','base',[],'nb',nb,'nc',nc,... 'parent',[],'children',[],'coord',[],'color',[],'cldist','centroid'); sC.base = [1:nb]; sC.parent = zeros(nc,1); sC.children = cell(nc,1); sC.children(:) = {[]}; sC.coord = zeros(nc,2); sC.color = zeros(nc,3); return; function Z = sC2Z(sC,height) if nargin<2, height = 'level'; end root = find(sC.parent==0); order = [root]; ch = sC.children(root); while any(ch), i = ch(1); order = [ch(1), order]; ch = [ch(2:end), sC.children{i}]; end he = zeros(sC.nc,1); if strcmp(height,'level'), ch = sC.children{root}; while any(ch), i = ch(1); he(i) = he(sC.parent(i))+1; ch = [ch(2:end), sC.children{i}]; end he = max(he)-he; elseif strcmp(height,'level2'), for i=order, if any(sC.children{i}), he(i) = max(he(sC.children{i}))+1; end, end else %he = som_cldist ( between children ) end Z = zeros(sC.nb-1,3); i = sC.nb-1; inds = root; while i>0, ch = sC.children{inds(1)}; h = he(inds(1)); inds = [inds(2:end), ch]; if length(ch)>=2, for k=1:length(ch)-2, Z(i,:) = [i-1, ch(k), h]; i = i - 1; end Z(i,:) = [ch(end-1) ch(end) h]; i = i - 1; end end return; function sC = Z2sC(Z) nb = size(Z,1)+1; nc = 2*nb-1; sC = clstruct(nb,nc); sC.base = [1:nb]; for i=1:nc, j = find(Z(:,1)==i | Z(:,2)==i); sC.parent(i) = nb+j; sC.children{sC.parent(i)}(end+1) = i; end % coords and color order = nc; nonleaves = 1; while any(nonleaves), j = nonleaves(1); ch = sC.children{order(j)}; if j==1, oleft = []; else oleft = order(1:(j-1)); end if j==length(order), oright = []; else oright = order((j+1):length(order)); end order = [oleft, ch, oright]; nonleaves = find(order>nb); end [dummy,co] = sort(order); sC.coord = derivative_average(sC,co'); H = hsv(nb+1); sC.color = derivative_average(sC,H(co,:)); return; function sC = part2sC(part) nb = max(part); nc = nb+1; sC = clstruct(nb,nc); sC.base = part; sC.parent(1:nb) = nc; sC.children{nc} = [1:nb]; co = [1:nb]'; sC.coord = derivative_average(sC,co); H = hsv(nb+1); sC.color = derivative_average(sC,H(1:nb,:)); return; function [sC,old2new] = removecluster(sC,ind) old2new = [1:sC.nc]; parent_ind = sC.parent(ind); ch = sC.children{ind}; if ~parent_ind, % trying to remove root cluster - no go return; elseif ~any(ch), % trying to remove a base cluster - no go return; else % ok, proceed old2new = [1:ind-1 0 ind:sC.nc-1]; % update parent and child fields sC.parent(ch) = parent_ind; sC.children{parent_ind} = setdiff([sC.children{parent_ind}, ch],ind); % remove old cluster j = [1:ind-1, ind+1:sC.nc]; sC.parent = sC.parent(j); sC.children = sC.children(j); sC.color = sC.color(j,:); sC.coord = sC.coord(j,:); sC.nc = sC.nc-1; % update old indeces to new indices sC.parent = old2new(sC.parent); for i=1:sC.nc, sC.children{i} = old2new(sC.children{i}); end end return; function [sC,old2new,inew] = addmergedcluster(sC,inds) old2new = [1:sC.nc]; inew = 0; p_inds = sC.parent(inds); if ~all(p_inds(1)==p_inds), % clusters are not siblings - no go return; end parent_ind = p_inds(1); if isempty(setdiff(sC.children{parent_ind},inds)), % such a merged cluster exists already return; else % ok, proceed inew = parent_ind; old2new = [1:inew-1,inew+1:sC.nc+1]; % add the new cluster (=copy of parent_ind) j = [1:inew,inew:sC.nc]; sC.parent = sC.parent(j); sC.children = sC.children(j); sC.color = sC.color(j,:); sC.coord = sC.coord(j,:); sC.nc = sC.nc+1; % update old indeces to new indices sC.parent = old2new(sC.parent); for i=1:sC.nc, sC.children{i} = old2new(sC.children{i}); end inds = old2new(inds); parent_ind = old2new(parent_ind); % update parent, child, color and coord fields sC.parent(inds) = inew; sC.parent(inew) = parent_ind; sC.children{inew} = inds; sC.children{parent_ind} = [setdiff(sC.children{parent_ind}, inds), inew]; b = baseind(sC,inew); sC.color(inew,:) = mean(sC.color(b,:)); sC.coord(inew,:) = mean(sC.coord(b,:)); end return; function C = derivative_average(sC,Cbase) [n dim] = size(Cbase); if n ~= sC.nb, error('Color / Coord matrix should have nb rows'); end C = zeros(sC.nc,dim); for i=1:sC.nc, C(i,:) = mean(Cbase(baseind(sC,i),:)); end return; function bi = baseind(sC,ind) bi = [ind]; i = 1; while i<=length(bi), bi = [bi, sC.children{bi(i)}]; end bi = bi(bi<=sC.nb); return;