git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_drsignif.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_drsignif.m
Blame
History
Raw
function sig = som_drsignif(sigmea,Cm) % SOM_DRSIGNIF Significance measure from confusion matrix between two clusters and a rule. % % sig = som_drsignif(sigmea,Cm) % % sigmea (string) significance measure: 'accuracy', % 'mutuconf' (default), or 'accuracyI'. % (See definitions below). % Cn Vectorized confusion matrix, or a matrix of such vectors. % (vector) [a, c, b, d] (see below) % (matrix) [[a1,c1,b1,d1], ..., [an,cn,bn,dn]] % % sig (vector) length=n, significance values % % The confusion matrix Cm below between group (G) and contrast group (not G) % and rule (true - false) is used to determine the significance values: % % G not G % --------------- accuracy = (a+d) / (a+b+c+d) % true | a | b | % |-------------- mutuconf = a*a / ((a+b)(a+c)) % false | c | d | % --------------- accuracyI = a / (a+b+c) % % See also SOM_DREVAL, SOM_DRMAKE. % Contributed to SOM Toolbox 2.0, March 4th, 2002 by Juha Vesanto % Copyright (c) by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 040302 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% input arguments true_x = Cm(:,1); % x = in group false_x = Cm(:,2); % false = rule is false true_y = Cm(:,3); % true = rule is true false_y = Cm(:,4); % y = not in group true_items = true_x + true_y; x_items = true_x + false_x; all_items = true_x + false_x + true_y + false_y; true_or_x = x_items + true_items - true_x; switch sigmea, case 'mutuconf', % mutual confidence, or relevance (as defined in WSOM2001 paper) sig = zeros(size(true_x)); i = find(true_items>0 & x_items>0); sig(i) = (true_x(i).^2) ./ (true_items(i).*x_items(i)); case 'accuracy', % accuracy sig = (true_x + false_y) ./ all_items; case 'accuracyI', % accuracy such that false_y is left out of consideration sig = true_x./true_or_x; otherwise, error(['Unrecognized significance measures: ' sigmea]); end return;