git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
2095645
Branches
Tags
master
SVMCrossVal.git
calculateDecodePerformance.m
SVMCrossVal toolbox init
Christoph Budziszewski
commited
2095645
at 2008-12-17 13:45:29
calculateDecodePerformance.m
Blame
History
Raw
% function [decodePerformance rawTimecourse ] = calculateDecodePerformance(des,timeLineStart, timeLineEnd, decodeDuration, svmargs, conditionList, sessionList, voxelList, classList, labelMap,normalize) function outputStruct = calculateDecodePerformance(inputStruct) addpath 'libsvm-mat-2.88-1'; outputStruct = struct; des = inputStruct.des; timeLineStart = inputStruct.frameShiftStart; timeLineEnd = inputStruct.frameShiftEnd; decodeDuration = inputStruct.decodeDuration; svmargs = inputStruct.svmargs; sessionList = inputStruct.sessionList; voxelList = inputStruct.voxelList; % classList = inputStruct.classList; % labelMap = inputStruct.labelMap; % normalize = inputStruct.normalize; globalStart = inputStruct.psthStart; globalEnd = inputStruct.psthEnd; baselineStart = inputStruct.baselineStart; baselineEnd = inputStruct.baselineEnd; eventList = inputStruct.eventList; minPerformance = inf; maxPerformance = -inf; %Pro Voxel PSTH TIMELINE berechnen. % timeshift mit pst-timeline durchf�hren. % psth-timeline -25 bis +15 zu RES Onset. % eventList = [9,11,13;10,12,14]; % globalStart = -25; % globalEnd = 15; % baselineStart = -22; % baselineEnd = -20; for voxel = 1:size(voxelList,1) % [[x;x],[y;y],[z;z]] extr = calculateImageData(voxelList(voxel,:),des); rawdata=cell2mat({extr.mean}); % Raw Data pst{voxel} = calculatePST(des,globalStart,baselineStart,baselineEnd,globalEnd,eventList,rawdata,sessionList); end decodePerformance = []; for timeShift = timeLineStart:1:timeLineEnd frameStart = floor(-globalStart+1+timeShift - 0.5*decodeDuration); frameEnd = min(ceil(frameStart+decodeDuration + 0.5*decodeDuration),-globalStart+globalEnd); tmp =[]; anyvoxel = 1; for label = 1:size(pst{1,anyvoxel},2) for dp = 1:size(pst{1,anyvoxel}{1,label},1) % data point row = label; for voxel = 1:size(pst,2) row = [row, pst{1,voxel}{1,label}(dp,frameStart:frameEnd)]; % label,value,value end tmp = [tmp; row]; end end svmdata = tmp(:,2:size(tmp,2)); svmlabel = tmp(:,1); performance = svmtrain(svmlabel, svmdata, svmargs); minPerformance = min(minPerformance,performance); maxPerformance = max(maxPerformance,performance); decodePerformance = [decodePerformance; performance]; end outputStruct.decodePerformance = decodePerformance; outputStruct.svmdata = svmdata; outputStruct.svmlabel = svmlabel; outputStruct.rawTimeCourse = pst; outputStruct.minPerformance = minPerformance; outputStruct.maxPerformance = maxPerformance; % display(sprintf('Min CrossVal Accuracy: %g%% \t Max CrossVal Accuracy: %g%%',minPerformance,maxPerformance)); end function extr = calculateImageData(voxelList,des) dtype='PSTH'; switch dtype case 'PSTH' V=des.xY.VY; case 'betas' V=des.Vbeta; end; % for z=1:length(V) % Change Drive Letter! % V(z).fname(1)='E'; % end; % rad = 0; % one voxel % opt = 1; % xyz coordinates [mm] vox = voxelList; nRoi = size(vox,1); nImg = numel(V); for k=1:nImg extr(k) = struct(... 'val', repmat(NaN, [1 nRoi]),... 'mean', repmat(NaN, [1 nRoi]),... 'sum', repmat(NaN, [1 nRoi]),... 'nvx', repmat(NaN, [1 nRoi]),... 'posmm', repmat(NaN, [3 nRoi]),... 'posvx', repmat(NaN, [3 nRoi])); roicenter = round(inv(V(k).mat)*[vox, ones(nRoi,1)]'); for l = 1:nRoi % if rad==0 x = roicenter(1,l); y = roicenter(2,l); z = roicenter(3,l); % else % tmp = spm_imatrix(V(k).mat); % vdim = tmp(7:9); % vxrad = ceil((rad*ones(1,3))./(ones(nRoi,1)*vdim))'; % [x y z] = ndgrid(-vxrad(1,l):sign(vdim(1)):vxrad(1,l), ... % -vxrad(2,l):sign(vdim(2)):vxrad(2,l), ... % -vxrad(3,l):sign(vdim(3)):vxrad(3,l)); % sel = (x./vxrad(1,l)).^2 + (y./vxrad(2,l)).^2 + ... % (z./vxrad(3,l)).^2 <= 1; % x = roicenter(1,l)+x(sel(:)); % y = roicenter(2,l)+y(sel(:)); % z = roicenter(3,l)+z(sel(:)); % end; dat = spm_sample_vol(V(k), x, y, z,0); [maxv maxi] = max(dat); tmp = V(k).mat*[x(maxi); y(maxi); z(maxi);1]; % Max Pos extr(k).val(l) = maxv; extr(k).sum(l) = sum(dat); extr(k).mean(l) = nanmean(dat); extr(k).nvx(l) = numel(dat); extr(k).posmm(:,l) = tmp(1:3); extr(k).posvx(:,l) = [x(maxi); y(maxi); z(maxi)]; % Max Pos end; end; end % disp(sprintf('Extracted at %.1f %.1f %.1f [xyz(mm)], average of %i voxel(s) [%.1fmm radius Sphere]',vox,length(x),rad)); function pst = calculatePST(des,globalStart,baselineStart,baselineEnd,globalEnd,eventList,data,sessionList) bstart = baselineStart; bend = baselineEnd; edur = 12; pre = globalStart; post = globalEnd; res = 1; normz = 'file'; pm = 0; lsess = getNumberOfScans(des); nSessions = getNumberOfSessions(des); tr = 2; [evntrow evntcol]=size(eventList); hsec=str2num(des.xsDes.High_pass_Filter(8:end-3)); % Highpass filter [sec] from SPM.mat if strcmp(des.xBF.UNITS,'secs') unitsecs=1; end; nScansPerSession=getNumberOfScans(des); %stime=[0:tr:max(nScansPerSession)*tr+post-tr]; % Stimulus time for raw data plot stime=0:tr:max(nScansPerSession)*tr+round(post/tr)*tr-tr; % Stimulus time for raw data plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % RUN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Digital Highpass Rp=0.5; Rs=20; NO=1; Wp=1/((1/2/tr)/(1/hsec)); [B, A] = ellip(NO,Rp,Rs,Wp,'high'); sdata(1:max(nScansPerSession)+round(post/tr),1:nSessions)=nan; % Open Data Matrix for z=1:nSessions % Fill Data Matrix sessionwise sdata(1:nScansPerSession(z),z)=data(sum(nScansPerSession(1:z))-nScansPerSession(z)+1:sum(nScansPerSession(1:z)))'; end; % usdata=sdata; % Keep unfiltered data sdatamean=nanmean(nanmean(sdata(:,:))); for z=1:nSessions % X(:,z)=[1:1:max(nScansPerSession)]'; % #Volume sdata(1:nScansPerSession(z),z)=filtfilt(B,A,sdata(1:nScansPerSession(z),z)); %Filter Data (Highpass) end; sdata=sdata+sdatamean; %%%%Parametric Modulation Modus%%%% if pm %Find Parameters for Event of Interest [imods modss mods erow evntrow eventList] = getParametricMappingEvents(eventList,evntrow,des,pmf); end; %%%%PM%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for zr=1:evntrow n{zr}=0; nn{zr}=0; nnn{zr}=0; sstart{zr}=1; end; sesst0=0; for sessionID=sessionList if sessionID>1 sesst0(sessionID)=sum(lsess(1:sessionID-1))*tr; end; for zr=1:evntrow %LABEL NUMBER, EVENT GROUP sstart{zr}=n{zr}+1; for ze=1:evntcol % EVENT INDEX in EventList if ze==1 || (ze>1 && eventList(zr,ze)~=eventList(zr,ze-1)) for zz=1:length(des.Sess(sessionID).U(eventList(zr,ze)).ons) % EVENT REPETITION NUMBER if ~unitsecs des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)=(des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)-1)*tr; des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)=(des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)-1)*tr; end; nnn{zr}=nnn{zr}+1; % INFO for rawdataplot start if des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)<edur mev{zr}(nnn{zr},1:2)=[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+sesst0(sessionID) edur]; % modeled event [onset length] else mev{zr}(nnn{zr},1:2)=[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+sesst0(sessionID) des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)]; end; % INFO for rawdataplot end n{zr}=n{zr}+1; pst{zr}(n{zr},:)=interp1(stime,sdata(:,sessionID),[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+pre:res:des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+post],'linear'); if strcmp(normz,'epoc') bline=nanmean(pst{zr}(n{zr},round(-pre/res+(bstart)/res+1):round(-pre/res+(bend)/res+1))); if isnan(bline) pst{zr}(n{zr},1:-pre/res+post/res+1)=nan; else % nn{zr}=nn{zr}+1; pst{zr}(n{zr},:)=(pst{zr}(n{zr},:)-bline)/bline*100; % 'epoch-based' normalization end; end; end; end; end; if ~strcmp(normz,'epoc') bline(zr)=nanmean(nanmean(pst{zr}(sstart{zr}:n{zr},-pre/res+(bstart)/res+1:-pre/res+(bend)/res+1))); bstd(zr)=nanmean(nanstd(pst{zr}(sstart{zr}:n{zr},-pre/res+(bstart)/res+1:-pre/res+(bend)/res+1))); nn{zr}=n{zr}; end; end; if strcmp(normz,'filz') for zr=1:evntrow pst{zr}(sstart{zr}:n{zr},:)=(pst{zr}(sstart{zr}:n{zr},:)-mean(bline))/mean(bstd); % session-based z-score normalization end; elseif strcmp(normz,'file') for zr=1:evntrow pst{zr}(sstart{zr}:n{zr},:)=(pst{zr}(sstart{zr}:n{zr},:)-mean(bline))/mean(bline)*100; % session-based normalization end; end; end; end