git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
lvq1.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
lvq1.m
Blame
History
Raw
function codebook=lvq1(codebook, data, rlen, alpha); %LVQ1 Trains a codebook with the LVQ1 -algorithm. % % sM = lvq1(sM, D, rlen, alpha) % % sM = lvq1(sM,sD,30*length(sM.codebook),0.08); % % Input and output arguments: % sM (struct) map struct, the class information must be % present on the first column of .labels field % D (struct) data struct, the class information must % be present on the first column of .labels field % rlen (scalar) running length % alpha (scalar) learning parameter % % sM (struct) map struct, the trained codebook % % NOTE: does not take mask into account. % % For more help, try 'type lvq1', or check out online documentation. % See also LVQ3, SOM_SUPERVISED, SOM_SEQTRAIN. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % lvq1 % % PURPOSE % % Trains codebook with the LVQ1 -algorithm (described below). % % SYNTAX % % sM = lvq1(sM, D, rlen, alpha) % % DESCRIPTION % % Trains codebook with the LVQ1 -algorithm. Codebook contains a number % of vectors (mi, i=1,2,...,n) and so does data (vectors xj, % j=1,2,...,k). Both vector sets are classified: vectors may have a % class (classes are set to the first column of data or map -structs' % .labels -field). For each xj there is defined the nearest codebook % -vector index c by searching the minimum of the euclidean distances % between the current xj and codebook -vectors: % % c = min{ ||xj - mi|| }, i=[1,..,n], for fixed xj % i % If xj and mc belong to the same class, mc is updated as follows: % mc(t+1) = mc(t) + alpha * (xj(t) - mc(t)) % If xj and mc belong to different classes, mc is updated as follows: % mc(t+1) = mc(t) - alpha * (xj(t) - mc(t)) % Otherwise updating is not performed. % % Argument 'rlen' tells how many times training sequence is performed. % LVQ1 -algorithm may be stopped after a number of steps, that is % 30-50 times the number of codebook vectors. % % Argument 'alpha' is the learning rate, recommended to be smaller % than 0.1. % % NOTE: does not take mask into account. % % REFERENCES % % Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, % Berlin, 1995, pp. 176-179. % % See also LVQ_PAK from http://www.cis.hut.fi/research/som_lvq_pak.shtml % % REQUIRED INPUT ARGUMENTS % % sM The data to be trained. % (struct) A map struct. % % D The data to use in training. % (struct) A data struct. % % rlen (integer) Running length of LVQ1 -algorithm. % % alpha (float) Learning rate used in training. % % OUTPUT ARGUMENTS % % codebook Trained data. % (struct) A map struct. % % EXAMPLE % % lab = unique(sD.labels(:,1)); % different classes % mu = length(lab)*5; % 5 prototypes for each % sM = som_randinit(sD,'msize',[mu 1]); % initial prototypes % sM.labels = [lab;lab;lab;lab;lab]; % their classes % sM = lvq1(sM,sD,50*mu,0.05); % use LVQ1 to adjust % % the prototypes % sM = lvq3(sM,sD,50*mu,0.05,0.2,0.3); % then use LVQ3 % % SEE ALSO % % lvq3 Use LVQ3 algorithm for training. % som_supervised Train SOM using supervised training. % som_seqtrain Train SOM with sequential algorithm. % Contributed to SOM Toolbox vs2, February 2nd, 2000 by Juha Parhankangas % Copyright (c) Juha Parhankangas % http://www.cis.hut.fi/projects/somtoolbox/ % Juha Parhankangas 310100 juuso 020200 cod = codebook.codebook; c_class = class2num(codebook.labels(:,1)); dat = data.data; d_class = class2num(data.labels(:,1)); x=size(dat,1); y=size(cod,2); ONES=ones(size(cod,1),1); for t=1:rlen fprintf(1,'\rTraining round: %d',t); tmp=NaN*ones(x,y); for j=1:x no_NaN=find(~isnan(dat(j,:))); di = sqrt(sum([cod(:,no_NaN) - ONES*dat(j,no_NaN)].^2,2)); [foo,ind] = min(di); if d_class(j) & d_class(j) == c_class(ind) % 0 is for unclassified vectors tmp(ind,:) = cod(ind,:) + alpha * (dat(j,:) - cod(ind,:)); elseif d_class(j) tmp(ind,:) = cod(ind,:) - alpha*(dat(j,:) - cod(ind,:)); end end inds = find(~isnan(sum(tmp,2))); cod(inds,:) = tmp(inds,:); end codebook.codebook = cod; sTrain = som_set('som_train','algorithm','lvq1',... 'data_name',data.name,... 'neigh','',... 'mask',ones(y,1),... 'radius_ini',NaN,... 'radius_fin',NaN,... 'alpha_ini',alpha,... 'alpha_type','constant',... 'trainlen',rlen,... 'time',datestr(now,0)); codebook.trainhist(end+1) = sTrain; return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function nos = class2num(class) names = {}; nos = zeros(length(class),1); for i=1:length(class) if ~isempty(class{i}) & ~any(strcmp(class{i},names)) names=cat(1,names,class(i)); end end tmp_nos = (1:length(names))'; for i=1:length(class) if ~isempty(class{i}) nos(i,1) = find(strcmp(class{i},names)); end end