git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_distortion3.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_distortion3.m
Blame
History
Raw
function [Err,sPropTotal,sPropMunits,sPropComps] = som_distortion3(sM,D,rad) %SOM_DISTORTION3 Map distortion measures. % % [sE,Err] = som_distortion3(sM,[D],[rad]); % % sE = som_distortion3(sM); % % Input and output arguments ([]'s are optional): % sM (struct) map struct % [D] (matrix) a matrix, size dlen x dim % (struct) data or map struct % by default the map struct is used % [rad] (scalar) neighborhood radius, looked from sM.trainhist % by default, or = 1 if that has no valid values % % Err (matrix) size munits x dim x 3 % distortion error elements (quantization error, % neighborhood bias, and neighborhood variance) % for each map unit and component % sPropTotal (struct) .n = length of data % .h = mean neighborhood function value % .err = errors % sPropMunits (struct) .Ni = hits per map unit % .Hi = sum of neighborhood values for each map unit % .Err = errors per map unit % sPropComps (struct) .e1 = total squared distance to centroid % .eq = total squared distance to BMU % .Err = errors per component % % See also SOM_QUALITY. % Contributed to SOM Toolbox 2.0, January 3rd, 2002 by Juha Vesanto % Copyright (c) by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 030102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% arguments % map [munits dim] = size(sM.codebook); % neighborhood radius if nargin<3, if ~isempty(sM.trainhist), rad = sM.trainhist(end).radius_fin; else rad = 1; end end if rad<eps, rad = eps; end if isempty(rad) | isnan(rad), rad = 1; end % neighborhood function Ud = som_unit_dists(sM.topol); switch sM.neigh, case 'bubble', H = (Ud <= rad); case 'gaussian', H = exp(-(Ud.^2)/(2*rad*rad)); case 'cutgauss', H = exp(-(Ud.^2)/(2*rad*rad)) .* (Ud <= rad); case 'ep', H = (1 - (Ud.^2)/rad) .* (Ud <= rad); end Hi = sum(H,2); % data if nargin<2, D = sM.codebook; end if isstruct(D), D = D.data; end [dlen dim] = size(D); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% quality measures % find Voronoi sets, and calculate their properties [bmus,qerr] = som_bmus(sM,D); M = sM.codebook; Vn = M; Vm = M; Ni = zeros(munits,dim); for i=1:munits, inds = find(bmus==i); Ni(i,:) = sum(isfinite(D(inds,:)),1); % size of Voronoi set if any(Ni(i,:)), Vn(i,:) = centroid(D(inds,:),M(i,:)); end % centroid of Voronoi set Vm(i,:) = centroid(M,M(i,:),H(i,:)'); % centroid of neighborhood end HN = repmat(Hi,1,dim).*Ni; %% distortion % quantization error (in each Voronoi set and for each component) Eqx = zeros(munits,dim); Dx = (Vn(bmus,:) - D).^2; Dx(isnan(Dx)) = 0; for i = 1:dim, Eqx(:,i) = full(sum(sparse(bmus,1:dlen,Dx(:,i),munits,dlen),2)); end Eqx = repmat(Hi,1,dim).*Eqx; % bias in neighborhood (in each Voronoi set / component) Enb = (Vn-Vm).^2; Enb = HN.*Enb; % variance in neighborhood (in each Voronoi set / component) Env = zeros(munits,dim); for i=1:munits, Env(i,:) = H(i,:)*(M-Vm(i*ones(munits,1),:)).^2; end Env = Ni.*Env; % total distortion (in each Voronoi set / component) Ed = Eqx + Enb + Env; %% other error measures % squared quantization error (to data centroid) me = centroid(D,mean(M)); Dx = D - me(ones(dlen,1),:); Dx(isnan(Dx)) = 0; e1 = sum(Dx.^2,1); % squared quantization error (to map units) Dx = D - M(bmus,:); Dx(isnan(Dx)) = 0; eq = sum(Dx.^2,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% output % distortion error matrix Err = zeros(munits,dim,5); Err(:,:,1) = Eqx; Err(:,:,2) = Enb; Err(:,:,3) = Env; % total errors sPropTotal = struct('n',sum(Ni),'h',mean(Hi),'e1',sum(e1),'err',sum(sum(Err,2),1)); % properties of map units sPropMunits = struct('Ni',[],'Hi',[],'Err',[]); sPropMunits.Ni = Ni; sPropMunits.Hi = Hi; sPropMunits.Err = squeeze(sum(Err,2)); % properties of components sPropComps = struct('Err',[],'e1',[],'eq',[]); sPropComps.Err = squeeze(sum(Err,1)); sPropComps.e1 = e1; sPropComps.eq = eq; return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 %% subfunctions function v = centroid(D,default,weights) [n dim] = size(D); I = sparse(isnan(D)); D(I) = 0; if nargin==3, W = weights(:,ones(1,dim)); W(I) = 0; D = D.*W; nn = sum(W,1); else nn = n-sum(I,1); end c = sum(D,1); v = default; i = find(nn>0); v(i) = c(i)./nn(i); return; function vis figure som_show(sM,'color',{Hi,'Hi'},'color',{Ni,'hits'},... 'color',{Ed,'distortion'},'color',{Eqx,'qxerror'},... 'color',{Enb,'N-bias'},'color',{Env,'N-Var'}); ed = Eqx + Enb + Env; i = find(ed>0); eqx = 0*ed; eqx(i) = Eqx(i)./ed(i); enb = 0*ed; enb(i) = Enb(i)./ed(i); env = 0*ed; env(i) = Env(i)./ed(i); figure som_show(sM,'color',Hi,'color',Ni,'color',Ed,... 'color',eqx,'color',enb,'color',env);