git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_kmeanscolor.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_kmeanscolor.m
Blame
History
Raw
function [color,best,kmeans]=som_kmeanscolor(sM,C,initRGB,contrast) % SOM_KMEANSCOLOR Map unit color code according to K-means clustering % % [color, best, kmeans] = som_kmeanscolor(sM, C, [initRGB],[contrast]) % % color = som_kmeanscolor(sM,15,som_colorcode(sM,'rgb1'),'enhance'); % [color,best] = som_kmeanscolor(sM,15,[],'normal'); % % Input and output arguments ([]'s are optional): % sM (struct) map struct % C (scalar) maximum number of clusters % initRGB (string, matrix) color code string accepted by SOM_COLORCODE % or an Mx3 matrix of RGB triples, where M is the number % of map units. Default: SOM_COLORCODEs default % contrast (string) 'flat', 'enhanced' color contrast mode, default: % 'enhanced' % % color (matrix) MxCx3 of RGB triples % best (scalar) index for "best" clustering according to % Davies-Boulding index; color(:,:,best) includes the % corresponding color code. % kmeans (cell) output of KMEANS_CLUSTERS in a cell array. % % The function gives a set of color codings according to K-means % clustering. For clustering, it uses function KMEANS_CLUSTERS for map units, % and it calculates color codings for 1,2,...,C clusters. % The idea of coloring is that the color of a cluster is the mean of the % original colors (RGB values) of the map units belonging to that cluster, % see SOM_CLUSTERCOLOR. The original colors are defined by SOM_COLORCODE % by default. Input 'contrast' simply specifies whether or not % to linearly redistribute R,G, and B values so that minimum is 0 and % maximum 1 ('enahanced') or to use directly the output of % SOM_CLUSTERCOLOR ('flat'). KMEANS_CLUSTERS uses certain heuristics to % select the best of 5 trials for each number of clusters. Evaluating the % clustering multiple times may take some time. % % EXAMPLE % % load iris; % or any other map struct sM % [color,b]=som_kmeanscolor(sM,10); % som_show(sM,'color',color,'color',{color(:,:,b),'"Best clustering"'); % % See also SOM_SHOW, SOM_COLORCODE, SOM_CLUSTERCOLOR, KMEANS_CLUSTERS % Contributed to SOM Toolbox 2.0, April 1st, 2000 by Johan Himberg % Copyright (c) by Johan Himberg % http://www.cis.hut.fi/projects/somtoolbox/ % corrected help text 11032005 johan %%% Check number of inputs error(nargchk(2, 4, nargin)); % check no. of input args %%% Check input args & set defaults if isstruct(sM) & isfield(sM,'type') & strcmp(sM.type,'som_map'), [tmp,lattice,msize]=vis_planeGetArgs(sM); munits=prod(msize); if length(msize)>2 error('Does not work with 3D maps.') end else error('Map struct requires for first input argument!'); end if ~vis_valuetype(C,{'1x1'}), error('Scalar value expect for maximum number of clusters.'); end % check initial color coding if nargin<3 | isempty(initRGB) initRGB=som_colorcode(sM); end % check contrast checking if nargin<4 | isempty(contrast), contrast='enhanced'; end if ~ischar(contrast), error('String input expected for input arg. ''contrast''.'); else switch lower(contrast) case {'flat','enhanced'} ; otherwise error(['''flat'' or ''enhanced'' expected for '... 'input argument ''contrast''.']); end end if ischar(initRGB), try initRGB=som_colorcode(sM,initRGB); catch error(['Color code ' initRGB ... 'was not recognized by SOM_COLORCODE.']); end elseif vis_valuetype(initRGB,{'nx3rgb',[munits 3]},'all'), ; else error(['The initial color code must be a string '... 'or an Mx3 matrix of RGB triples.']); end %%% Action %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% disp('Wait...'); [c,p,err,ind]=kmeans_clusters(sM,C,5,0); % use 5 trials, verbose off % Store outputs to kmeans kmeans{1}=c; kmeans{2}=p; kmeans{3}=err; kmeans{4}=ind; %%% Build output color=som_clustercolor(sM,cat(2,p{:}),initRGB); [tmp,best]=min(ind); switch contrast case 'flat' ; case 'enhanced' warning off; ncolor=maxnorm(color); ncolor(~isfinite(ncolor))=color(~isfinite(ncolor)); color=ncolor; warning on; end %%% Subfunctions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function X=maxnorm(x) % normalize columns of x between [0,1] x=x-repmat(min(x),[size(x,1) 1 1]); X=x./repmat(max(x),[size(x,1) 1 1]);