git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_unit_dists.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_unit_dists.m
Blame
History
Raw
function Ud = som_unit_dists(topol,lattice,shape) %SOM_UNIT_DISTS Distances between unit-locations on the map grid. % % Ud = som_unit_dists(topol,[lattice],[shape]) % % Ud = som_unit_dists(sMap); % Ud = som_unit_dists(sMap.topol); % Ud = som_unit_dists(msize, 'hexa', 'cyl'); % Ud = som_unit_dists([10 4 4], 'rect', 'toroid'); % % Input and output arguments ([]'s are optional): % topol topology of the SOM grid % (struct) topology or map struct % (vector) the 'msize' field of topology struct % [lattice] (string) map lattice, 'rect' by default % [shape] (string) map shape, 'sheet' by default % % Ud (matrix, size [munits munits]) distance from each map unit % to each map unit % % For more help, try 'type som_unit_dists' or check out online documentation. % See also SOM_UNIT_COORDS, SOM_UNIT_NEIGHS. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_unit_dists % % PURPOSE % % Returns interunit distances between the units of a Self-Organizing Map % along the map grid. % % SYNTAX % % Ud = som_unit_dists(sTopol); % Ud = som_unit_dists(sM.topol); % Ud = som_unit_dists(msize); % Ud = som_unit_dists(msize,'hexa'); % Ud = som_unit_dists(msize,'rect','toroid'); % % DESCRIPTION % % Calculates the distances between the units of a SOM based on the % given topology. The distance are euclidian and they are measured % along the map grid (in the output space). % % In case of 'sheet' shape, the distances can be measured directly % from the unit coordinates given by SOM_UNIT_COORDS. % % In case of 'cyl' and 'toroid' shapes this is not so. In these cases % the coordinates are calculated as in the case of 'sheet' shape and % the shape is then taken into account by shifting the map grid into % different positions. % % Consider, for example, a 4x3 map. The basic position of map units % is shown on the left (with '1' - 'C' each denoting one map unit). % In case of a 'cyl' shape, units on the left and right edges are % neighbors, so for this purpose the map is copied on the left and % right sides of the map, as on right. % % basic left basic right % ------- ------- ------- ------- % 1 5 9 1 5 9 1 5 9 1 5 9 % 2 6 a 2 6 a 2 6 a 2 6 a % 3 7 b 3 7 b 3 7 b 3 7 b % 4 8 c 4 8 c 4 8 c 4 8 c % % For the 'toroid' shape a similar trick is done, except that the % copies are placed all around the basic position: % % 1 5 9 1 5 9 1 5 9 % 2 6 a 2 6 a 2 6 a % 3 7 b 3 7 b 3 7 b % 4 8 c 4 8 c 4 8 c % 1 5 9 1 5 9 1 5 9 % 2 6 a 2 6 a 2 6 a % 3 7 b 3 7 b 3 7 b % 4 8 c 4 8 c 4 8 c % 1 5 9 1 5 9 1 5 9 % 2 6 a 2 6 a 2 6 a % 3 7 b 3 7 b 3 7 b % 4 8 c 4 8 c 4 8 c % % From this we can see that the distance from unit '1' is 1 to units % '9','2','4' and '5', and sqrt(2) to units 'C','A','8' and '6'. Notice % that in the case of a 'hexa' lattice and 'toroid' shape, the size % of the map in y-direction should be even. The reason can be clearly % seen from the two figures below. On the left the basic positions for % a 3x3 map. If the map is copied above itself, it can be seen that the % lattice is broken (on the right): % % basic positions example of broken lattice % --------------- ------------------------- % 1 4 7 % 2 5 8 % 3 6 9 % 1 4 7 1 4 7 % 2 5 8 2 5 8 % 3 6 9 3 6 9 % % % REQUIRED INPUT ARGUMENTS % % topol Map grid dimensions. % (struct) topology struct or map struct, the topology % (msize, lattice, shape) of the map is taken from % the appropriate fields (see e.g. SOM_SET) % (vector) the vector which gives the size of the map grid % (msize-field of the topology struct). % % OPTIONAL INPUT ARGUMENTS % % lattice (string) The map lattice, either 'rect' or 'hexa'. Default % is 'rect'. 'hexa' can only be used with 1- or % 2-dimensional map grids. % shape (string) The map shape, either 'sheet', 'cyl' or 'toroid'. % Default is 'sheet'. % % OUTPUT ARGUMENTS % % Ud (matrix) distances from each map unit to each other map unit, % size is [munits munits] % % EXAMPLES % % Simplest case: % Ud = som_unit_dists(sTopol); % Ud = som_unit_dists(sMap.topol); % Ud = som_unit_dists(msize); % Ud = som_unit_dists([10 10]); % % If topology is given as vector, lattice is 'rect' and shape is 'sheet' % by default. To change these, you can use the optional arguments: % Ud = som_unit_dists(msize, 'hexa', 'toroid'); % % The distances can also be calculated for high-dimensional grids: % Ud = som_unit_dists([4 4 4 4 4 4]); % % SEE ALSO % % som_unit_coords Calculate grid coordinates. % som_unit_neighs Calculate neighborhoods of map units. % Copyright (c) 1997-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 1.0beta juuso 110997 % Version 2.0beta juuso 101199 170400 070600 130600 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Check arguments error(nargchk(1, 3, nargin)); % default values sTopol = som_set('som_topol','lattice','rect'); % topol if isstruct(topol), switch topol.type, case 'som_map', sTopol = topol.topol; case 'som_topol', sTopol = topol; end elseif iscell(topol), for i=1:length(topol), if isnumeric(topol{i}), sTopol.msize = topol{i}; elseif ischar(topol{i}), switch topol{i}, case {'rect','hexa'}, sTopol.lattice = topol{i}; case {'sheet','cyl','toroid'}, sTopol.shape = topol{i}; end end end else sTopol.msize = topol; end if prod(sTopol.msize)==0, error('Map size is 0.'); end % lattice if nargin>1 & ~isempty(lattice) & ~isnan(lattice), sTopol.lattice = lattice; end % shape if nargin>2 & ~isempty(shape) & ~isnan(shape), sTopol.shape = shape; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Action msize = sTopol.msize; lattice = sTopol.lattice; shape = sTopol.shape; munits = prod(msize); Ud = zeros(munits,munits); % free topology if strcmp(lattice,'free'), N1 = sTopol.connection; Ud = som_neighborhood(N1,Inf); end % coordinates of map units when the grid is spread on a plane Coords = som_unit_coords(msize,lattice,'sheet'); % width and height of the grid dx = max(Coords(:,1))-min(Coords(:,1)); if msize(1)>1, dx = dx*msize(1)/(msize(1)-1); else dx = dx+1; end dy = max(Coords(:,2))-min(Coords(:,2)); if msize(2)>1, dy = dy*msize(2)/(msize(2)-1); else dy = dy+1; end % calculate distance from each location to each other location switch shape, case 'sheet', for i=1:(munits-1), inds = [(i+1):munits]; Dco = (Coords(inds,:) - Coords(ones(munits-i,1)*i,:))'; Ud(i,inds) = sqrt(sum(Dco.^2)); end case 'cyl', for i=1:(munits-1), inds = [(i+1):munits]; Dco = (Coords(inds,:) - Coords(ones(munits-i,1)*i,:))'; dist = sum(Dco.^2); % The cylinder shape is taken into account by adding and substracting % the width of the map (dx) from the x-coordinate (ie. shifting the % map right and left). DcoS = Dco; DcoS(1,:) = DcoS(1,:) + dx; %East (x+dx) dist = min(dist,sum(DcoS.^2)); DcoS = Dco; DcoS(1,:) = DcoS(1,:) - dx; %West (x-dx) dist = min(dist,sum(DcoS.^2)); Ud(i,inds) = sqrt(dist); end case 'toroid', for i=1:(munits-1), inds = [(i+1):munits]; Dco = (Coords(inds,:) - Coords(ones(munits-i,1)*i,:))'; dist = sum(Dco.^2); % The toroid shape is taken into account as the cylinder shape was % (see above), except that the map is shifted also vertically. DcoS = Dco; DcoS(1,:) = DcoS(1,:) + dx; %East (x+dx) dist = min(dist,sum(DcoS.^2)); DcoS = Dco; DcoS(1,:) = DcoS(1,:) - dx; %West (x+dx) dist = min(dist,sum(DcoS.^2)); DcoS = Dco; DcoS(2,:) = DcoS(2,:) + dy; %South (y+dy) dist = min(dist,sum(DcoS.^2)); DcoS = Dco; DcoS(2,:) = DcoS(2,:) - dy; %North (y-dy) dist = min(dist,sum(DcoS.^2)); DcoS = Dco; DcoS(1,:) = DcoS(1,:) + dx; DcoS(2,:) = DcoS(2,:) - dy; %NorthEast (x+dx, y-dy) dist = min(dist,sum(DcoS.^2)); DcoS = Dco; DcoS(1,:) = DcoS(1,:) + dx; DcoS(2,:) = DcoS(2,:) + dy; %SouthEast (x+dx, y+dy) dist = min(dist,sum(DcoS.^2)); DcoS = Dco; DcoS(1,:) = DcoS(1,:) - dx; DcoS(2,:) = DcoS(2,:) + dy; %SouthWest (x-dx, y+dy) dist = min(dist,sum(DcoS.^2)); DcoS = Dco; DcoS(1,:) = DcoS(1,:) - dx; DcoS(2,:) = DcoS(2,:) - dy; %NorthWest (x-dx, y-dy) dist = min(dist,sum(DcoS.^2)); Ud(i,inds) = sqrt(dist); end otherwise, error (['Unknown shape: ', shape]); end Ud = Ud + Ud'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%