git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
4dbef18
Branches
Tags
master
SVMCrossVal.git
somtoolbox2
som_vis_coords.m
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski
commited
4dbef18
at 2009-01-21 16:34:25
som_vis_coords.m
Blame
History
Raw
function unit_coord=som_vis_coords(lattice, msize) %SOM_VIS_COORDS Unit coordinates used in visualizations. % % Co = som_vis_coords(lattice, msize) % % Co = som_vis_coords('hexa',[10 7]) % Co = som_vis_coords('rectU',[10 7]) % % Input and output arguments: % lattice (string) 'hexa', 'rect', 'hexaU' or 'rectU' % msize (vector) grid size in a 1x2 vector % % Co (matrix) Mx2 matrix of unit coordinates, where % M=prod(msize) for 'hexa' and 'rect', and % M=(2*msize(1)-1)*(2*msize(2)-1) for 'hexaU' and 'rectU' % % This function calculates the coordinates of map units on a 'sheet' % shaped map with either 'hexa' or 'rect' lattice as used in the % visualizations. Note that this slightly different from the % coordinates provided by SOM_UNIT_COORDS function. % % 'rectU' and 'hexaU' gives the coordinates of both units and the % connections for u-matrix visualizations. % % For more help, try 'type som_vis_coords' or check out online documentation. % See also SOM_UNIT_COORDS, SOM_UMAT, SOM_CPLANE, SOM_GRID. %%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PURPOSE % % Returns coordinates of the map units for map visualization % % SYNTAX % % Co = som_vis_coords(lattice, msize) % % DESCRIPTION % % This function calculates the coordinates of map units in 'hexa' and % 'rect' lattices in 'sheet' shaped map for visualization purposes. It % differs from SOM_UNIT_COORDS in the sense that hexagonal lattice is % calculated in a "wrong" way in order to get integer coordinates for % the units. Another difference is that it may be used to calculate % the coordinates of units _and_ the center points of the lines % connecting them (edges) by using 'hexaU' or 'rectU' for lattice. % This property may be used for drawing u-matrices. % % The unit number 1 is set to (ij) coordinates (1,1)+shift % 2 (2,1)+shift % % ... columnwise % % n-1th (n1-1,n2)+shift % nth (n1,n2)+shift % % where grid size = [n1 n2] and shift is zero, except for % the even lines of 'hexa' lattice, for which it is +0.5. % % For 'rectU' and 'hexaU' the unit coordinates are the same and the % coordinates for connections are set according to these. In this case % the ordering of the coordinates is the following: % let % U = som_umat(sMap); U=U(:); % make U a column vector % Uc = som_vis_coords(sMap.topol.lattice, sMap.topol.msize); % now the kth row of matrix Uc, i.e. Uc(k,:), contains the coordinates % for value U(k). % % REQUIRED INPUT ARGUMENTS % % lattice (string) The local topology of the units: % 'hexa', 'rect', 'hexaU' or 'rectU' % msize (vector) size 1x2, defining the map grid size. % Notice that only 2-dimensional grids % are allowed. % % OUTPUT ARGUMENTS % % Co (matrix) size Mx2, giving the coordinates for each unit. % M=prod(msize) for 'hexa' and 'rect', and % M=(2*msize(1)-1)*(2*msize(2)-1) for 'hexaU' and 'rectU' % % FEATURES % % Only 'sheet' shaped maps are considered. If coordinates for 'toroid' % or 'cyl' topologies are required, you must use SOM_UNIT_COORDS % instead. % % EXAMPLES % % Though this is mainly a subroutine for visualizations it may be % used, e.g., in the following manner: % % % This makes a hexagonal lattice, where the units are rectangular % % instead of hexagons. % som_cplane('rect',som_vis_coords('hexa',[10 7]),'none'); % % % Let's make a map and calculate a u-matrix: % sM=som_make(data,'msize',[10 7],'lattice','hexa'); % u=som_umat(sM); u=u(:); % % Now, these produce equivalent results: % som_cplane('hexaU',[10 7],u); % som_cplane(vis_patch('hexa')/2,som_vis_coords('hexaU',[10 7]),u); % % SEE ALSO % % som_grid Visualization of a SOM grid % som_cplane Visualize a 2D component plane, u-matrix or color plane % som_barplane Visualize the map prototype vectors as bar diagrams % som_plotplane Visualize the map prototype vectors as line graphs % som_pieplane Visualize the map prototype vectors as pie charts % som_unit_coords Locations of units on the SOM grid % Copyright (c) 1999-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta Johan 201099 juuso 261199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~vis_valuetype(msize,{'1x2'}), error('msize must be a 1x2 vector.') end if vis_valuetype(lattice,{'string'}) switch lattice case {'hexa', 'rect'} munits=prod(msize); unit_coord(:,1)=reshape(repmat([1:msize(2)],msize(1),1),1,munits)'; unit_coord(:,2)=repmat([1:msize(1)]',msize(2),1); if strcmp(lattice,'hexa') % Move even rows by .5 d=rem(unit_coord(:,2),2) == 0; unit_coord(d,1)=unit_coord(d,1)+.5; end case {'hexaU','rectU'} msize=2*msize-1; munits=prod(msize); unit_coord(:,1)=reshape(repmat([1:msize(2)],msize(1),1),1,munits)'; unit_coord(:,2)=repmat([1:msize(1)]',msize(2),1); if strcmp(lattice,'hexaU') d=rem(unit_coord(:,2),2) == 0; unit_coord(d,1)=unit_coord(d,1)+.5; d=rem(unit_coord(:,2)+1,4) == 0; unit_coord(d,1)=unit_coord(d,1)+1; end unit_coord=unit_coord/2+.5; otherwise error([ 'Unknown lattice ''' lattice '''.']); end else error('Lattice must be a string.'); end