Christoph Budziszewski commited on 2009-02-03 14:36:11
Zeige 11 geänderte Dateien mit 178 Einfügungen und 95 Löschungen.
git-svn-id: https://svn.discofish.de/MATLAB/spmtoolbox/SVMCrossVal@123 83ab2cfd-5345-466c-8aeb-2b2739fb922d
| ... | ... |
@@ -0,0 +1,51 @@ |
| 1 |
+function coordinateStruct = computeCoordinates(imageStruct) |
|
| 2 |
+%imageStruct.(someName).images |
|
| 3 |
+%imageStruct.(someName).roiImages |
|
| 4 |
+coordinateStruct = struct; |
|
| 5 |
+ |
|
| 6 |
+subjectCellList = fieldnames(imageStruct); |
|
| 7 |
+ |
|
| 8 |
+for subject = 1:length(subjectCellList) |
|
| 9 |
+ subjectFieldName = cell2mat(subjectCellList(subject)); |
|
| 10 |
+ % ROI Image Coordinates |
|
| 11 |
+ V = imageStruct.(subjectFieldName).images; |
|
| 12 |
+ Vm = imageStruct.(subjectFieldName).roiImages; |
|
| 13 |
+ coordinateStruct.(subjectFieldName) = ... |
|
| 14 |
+ computeRoiImageCoordinates(V,Vm); |
|
| 15 |
+ % Parsed Voxel Definitions |
|
| 16 |
+ coordinateStruct.(subjectFieldName) = ... |
|
| 17 |
+ appendManualVoxelCoordinates(coordinateStruct.(subjectFieldName),V); |
|
| 18 |
+ |
|
| 19 |
+end |
|
| 20 |
+end |
|
| 21 |
+ |
|
| 22 |
+function coordinates = appendManualVoxelCoordinates(coordinateStruct,V) |
|
| 23 |
+ coordinates =coordinateStruct; |
|
| 24 |
+end |
|
| 25 |
+ |
|
| 26 |
+function coordinates = computeRoiImageCoordinates(V,Vm) |
|
| 27 |
+ nVolImage = length(V); |
|
| 28 |
+ nRoiImage = length(Vm); |
|
| 29 |
+ |
|
| 30 |
+ coordinates = cell(nVolImage,1); |
|
| 31 |
+ |
|
| 32 |
+ for iVolImage = 1:nVolImage |
|
| 33 |
+ coordinates{iVolImage} = [];
|
|
| 34 |
+ for jRoiImage = 1:nRoiImage |
|
| 35 |
+ x = []; y = []; z = []; |
|
| 36 |
+ [x1 y1] = ndgrid(1:V(iVolImage).dim(1),1:V(iVolImage).dim(2)); |
|
| 37 |
+ for p = 1:V(iVolImage).dim(3) % resample mask Vm(jRoiImage) in space of V(iVolImage) |
|
| 38 |
+ B = spm_matrix([0 0 -p 0 0 0 1 1 1]); |
|
| 39 |
+ M = inv(B*inv(V(iVolImage).mat)*Vm(jRoiImage).mat); |
|
| 40 |
+ msk = find(spm_slice_vol(Vm(jRoiImage),M,V(iVolImage).dim(1:2),0)); |
|
| 41 |
+ if ~isempty(msk) |
|
| 42 |
+ z1 = p*ones(size(msk(:))); |
|
| 43 |
+ x = [x; x1(msk(:))]; |
|
| 44 |
+ y = [y; y1(msk(:))]; |
|
| 45 |
+ z = [z; z1]; |
|
| 46 |
+ end; |
|
| 47 |
+ end; |
|
| 48 |
+ coordinates{iVolImage} = [coordinates{iVolImage}; x, y, z];
|
|
| 49 |
+ end |
|
| 50 |
+ end |
|
| 51 |
+end |
|
| 0 | 52 |
\ No newline at end of file |
| ... | ... |
@@ -0,0 +1,9 @@ |
| 1 |
+function path = getStudyBasePath(studyID) |
|
| 2 |
+switch studyID |
|
| 3 |
+ case 'CHOICE24' |
|
| 4 |
+ path = fullfile('D:','Analyze','Choice','24pilot');
|
|
| 5 |
+ otherwise |
|
| 6 |
+ error('SVMCrossVal:getBasePath:noid',...
|
|
| 7 |
+ 'Please specify a base path in ''getStudyBasePath'' or check the studyID'); |
|
| 8 |
+end |
|
| 9 |
+end |
| ... | ... |
@@ -0,0 +1,23 @@ |
| 1 |
+function datastruct = loadImageFileNamesData(loadParams) |
|
| 2 |
+ |
|
| 3 |
+global SVMCROSSVAL_SUBJECT_PREFIX; |
|
| 4 |
+ |
|
| 5 |
+RESULT_PATH = fullfile('results','SPM.mat');
|
|
| 6 |
+ |
|
| 7 |
+for subjectCell = loadParams.subjectCellArray |
|
| 8 |
+ SubjectID = cell2mat(subjectCell); |
|
| 9 |
+ subjectString = strcat(SVMCROSSVAL_SUBJECT_PREFIX,SubjectID); |
|
| 10 |
+ |
|
| 11 |
+ display('loading SPM.mat ...');
|
|
| 12 |
+ des = load(fullfile(getStudyBasePath(loadParams.StudyID),SubjectID,RESULT_PATH)); |
|
| 13 |
+ des = des.SPM; |
|
| 14 |
+ display('... done.');
|
|
| 15 |
+ |
|
| 16 |
+ datastruct.(subjectString).images = getImageFileList(des,loadParams.use_smoothed_image_hack); |
|
| 17 |
+ |
|
| 18 |
+ ROIIMAGE = 1; |
|
| 19 |
+ if ROIIMAGE |
|
| 20 |
+ %load ROI Image Header |
|
| 21 |
+ datastruct.(subjectString).roiImages = readRoiImage(sprintf('Select ROI Images for Subject %s',SubjectID));
|
|
| 22 |
+ end |
|
| 23 |
+end |
|
| 0 | 24 |
\ No newline at end of file |
| ... | ... |
@@ -0,0 +1,54 @@ |
| 1 |
+function retVal = main(action,parameterModel) |
|
| 2 |
+ |
|
| 3 |
+% if nargs ~=2 |
|
| 4 |
+% error('SVMCrossVal:main:argument','wrong number of arguments');
|
|
| 5 |
+% end |
|
| 6 |
+ |
|
| 7 |
+StudyID = 'CHOICE24'; |
|
| 8 |
+ |
|
| 9 |
+ |
|
| 10 |
+ loadParams.StudyID = StudyID; |
|
| 11 |
+ loadParams.use_smoothed_image_hack = 1; |
|
| 12 |
+ loadParams.subjectCellArray = getSubjectIDString(parameterModel); |
|
| 13 |
+ |
|
| 14 |
+ imageStruct = loadImageFileNamesData(loadParams); |
|
| 15 |
+ assignin('base','imageStruct',imageStruct);
|
|
| 16 |
+ |
|
| 17 |
+ coordinateStruct = computeCoordinates(imageStruct); |
|
| 18 |
+ assignin('base','coordinateStruct',coordinateStruct);
|
|
| 19 |
+ |
|
| 20 |
+end |
|
| 21 |
+ |
|
| 22 |
+% generate parameter structs for subroutines |
|
| 23 |
+function timelineParams = getTimeLineParams(paramModel) |
|
| 24 |
+timelineParams = struct; |
|
| 25 |
+timelineParams.frameShiftStart = getDouble(paramModel.txtFrameShiftStart); % -20; |
|
| 26 |
+timelineParams.frameShiftEnd = getDouble(paramModel.txtFrameShiftEnd); %15; |
|
| 27 |
+timelineParams.decodeDuration = getDouble(paramModel.txtFrameShiftDur); |
|
| 28 |
+timelineParams.psthStart = getDouble(paramModel.txtPSTHStart); % -25; |
|
| 29 |
+timelineParams.psthEnd = getDouble(paramModel.txtPSTHEnd); % 20; |
|
| 30 |
+timelineParams.baselineStart = getDouble(paramModel.txtBaselineStart); % -22; |
|
| 31 |
+timelineParams.baselineEnd = getDouble(paramModel.txtBaselineEnd); % -20; |
|
| 32 |
+ |
|
| 33 |
+end |
|
| 34 |
+ |
|
| 35 |
+function calculateParams = parseCalculateParams(paramModel) |
|
| 36 |
+calculateParams = struct; |
|
| 37 |
+calculateParams.smoothed = getChkValue(paramModel.chkSmoothed); |
|
| 38 |
+calculateParams.svmargs = get(paramModel.txtSVMopts,'String'); |
|
| 39 |
+calculateParams.sessionList = 1:3; |
|
| 40 |
+ |
|
| 41 |
+calculateParams.CROSSVAL_METHOD = CROSSVAL_METHOD_DEF.svmcrossval; |
|
| 42 |
+calculateParams.VOXEL_SELECTION_MODE = VOXEL_SELECTION_MODE_DEF.roiImage; |
|
| 43 |
+calculateParams.PROJECT_BASE_PATH = PROJECT_BASE_PATH; |
|
| 44 |
+calculateParams.PROJECT_RESULT_PATH = PROJECT_RESULT_PATH; |
|
| 45 |
+calculateParams.RANDOMIZE = 0; |
|
| 46 |
+ |
|
| 47 |
+classStruct = parseClassDef(paramModel); |
|
| 48 |
+calculateParams.labelMap = LabelMap(classStruct.labelCells , classStruct.conditionCells, 'auto'); % LabelMap({'<','>','<+<','>+>','<+>','>+<'},{-2,-1,1,2,3,4}); 0 is autolabel
|
|
| 49 |
+calculateParams.classList = getClasses(calculateParams.labelMap); |
|
| 50 |
+calculateParams.eventList = classStruct.eventMatrix; %[9,11,13; 10,12,14]; |
|
| 51 |
+calculateParams.subjectSelection = subjectSelection; |
|
| 52 |
+ |
|
| 53 |
+% assignin('base','calculateParams',calculateParams);
|
|
| 54 |
+end |
| ... | ... |
@@ -1,45 +1,19 @@ |
| 1 |
-% filenameList as in SPM.xY.VY |
|
| 2 |
-% voxelList in [x y z], 1 coordinate per row |
|
| 1 |
+% filenameList (e.g. as in SPM.xY.VY) |
|
| 2 |
+% voxelList in [x y z], 1 coordinate per row, untransformed |
|
| 3 | 3 |
|
| 4 |
-function extr = calculateImageData(filenameList, voxelList) |
|
| 5 |
-%function extr = calculateImageData(voxelList,des,smoothed) |
|
| 6 |
-% global USE_DRIVE_CHECK_HACK; |
|
| 7 |
- |
|
| 8 |
-% dtype='PSTH'; |
|
| 9 |
- |
|
| 10 |
-% switch dtype |
|
| 11 |
-% case 'PSTH' |
|
| 12 |
-% V=des.xY.VY; |
|
| 13 |
-% case 'betas' |
|
| 14 |
-% V=des.Vbeta; |
|
| 15 |
-% end; |
|
| 16 |
- |
|
| 17 |
-% if USE_DRIVE_CHECK_HACK |
|
| 18 |
-% if V(1).fname(1)~='D' |
|
| 19 |
-% for z=1:length(V) % Change Drive Letter - HACK! |
|
| 20 |
-% V(z).fname(1) = 'D'; |
|
| 21 |
-% end; |
|
| 22 |
-% end |
|
| 23 |
-% end |
|
| 24 |
- |
|
| 25 |
-% if (~smoothed) |
|
| 26 |
-% for z=1:length(V) % Change smoothed Filename - HACK! |
|
| 27 |
-% % D:....SUBJECTID\session\swfanders... |
|
| 28 |
-% % D:....SUBJECTID\session\wfanders... |
|
| 29 |
-% tmp = findstr(filesep,V(z).fname); |
|
| 30 |
-% V(z).fname = strcat(V(z).fname(1:tmp(end)),V(z).fname(tmp(end)+2:end)); |
|
| 31 |
-% end; |
|
| 32 |
-% end |
|
| 4 |
+function extr = calculateImageData(filenameList, voxelList, imageOpts) |
|
| 5 |
+TRANSFORM_METHOD = 'image'; |
|
| 33 | 6 |
|
| 34 | 7 |
V = filenameList; |
| 35 | 8 |
|
| 36 | 9 |
vox = voxelList; |
| 37 | 10 |
nVoxel = size(vox,1); |
| 38 | 11 |
nImage = numel(V); |
| 12 |
+nRoiFiles = ; |
|
| 39 | 13 |
|
| 40 | 14 |
for kImage=1:nImage |
| 41 | 15 |
extr(kImage) = struct(... |
| 42 |
- 'val', repmat(NaN, [1 nVoxel]),... |
|
| 16 |
+ 'dat', repmat(NaN, [1 nVoxel]),... |
|
| 43 | 17 |
'mean', repmat(NaN, [1 nVoxel]),... |
| 44 | 18 |
'sum', repmat(NaN, [1 nVoxel]),... |
| 45 | 19 |
'nvx', repmat(NaN, [1 nVoxel]),... |
| ... | ... |
@@ -71,33 +44,10 @@ for kImage=1:nImage |
| 71 | 44 |
end |
| 72 | 45 |
end |
| 73 | 46 |
|
| 74 |
- |
|
| 75 |
- for iVoxel = 1:nVoxel |
|
| 76 |
- |
|
| 77 |
-% if rad==0 |
|
| 78 |
- x = roicenter(1,iVoxel); |
|
| 79 |
- y = roicenter(2,iVoxel); |
|
| 80 |
- z = roicenter(3,iVoxel); |
|
| 81 |
-% else |
|
| 82 |
-% tmp = spm_imatrix(V(kImage).mat); |
|
| 83 |
-% vdim = tmp(7:9); |
|
| 84 |
-% vxrad = ceil((rad*ones(1,3))./(ones(nVoxel,1)*vdim))'; |
|
| 85 |
-% [x y z] = ndgrid(-vxrad(1,iVoxel):sign(vdim(1)):vxrad(1,iVoxel), ... |
|
| 86 |
-% -vxrad(2,iVoxel):sign(vdim(2)):vxrad(2,iVoxel), ... |
|
| 87 |
-% -vxrad(3,iVoxel):sign(vdim(3)):vxrad(3,iVoxel)); |
|
| 88 |
-% sel = (x./vxrad(1,iVoxel)).^2 + (y./vxrad(2,iVoxel)).^2 + ... |
|
| 89 |
-% (z./vxrad(3,iVoxel)).^2 <= 1; |
|
| 90 |
-% x = roicenter(1,iVoxel)+x(sel(:)); |
|
| 91 |
-% y = roicenter(2,iVoxel)+y(sel(:)); |
|
| 92 |
-% z = roicenter(3,iVoxel)+z(sel(:)); |
|
| 93 |
-% end; |
|
| 94 |
- |
|
| 95 |
- |
|
| 96 | 47 |
dat = spm_sample_vol(V(kImage), x, y, z,0); |
| 97 | 48 |
extr(kImage).dat(iVoxel) = dat; |
| 98 | 49 |
extr(kImage).mean(iVoxel) = nanmean(dat); |
| 99 | 50 |
extr(kImage).nvx(iVoxel) = numel(dat); |
| 100 | 51 |
end; |
| 101 | 52 |
|
| 102 |
-end; |
|
| 103 | 53 |
end |
| 104 | 54 |
\ No newline at end of file |
| ... | ... |
@@ -96,13 +96,20 @@ for subjectCell = calculateParams.subjectSelection |
| 96 | 96 |
subjectParams = struct; |
| 97 | 97 |
|
| 98 | 98 |
subjectParams.des = spm.SPM; |
| 99 |
+ smoothed = calculateParams.smoothed; |
|
| 100 |
+ |
|
| 101 |
+ DataImageFilenames = getImageFileList(des,~smoothed); |
|
| 102 |
+ subjectParams.voxelList = getTransformedCoordinates(... |
|
| 103 |
+ calculateParams.VOXEL_SELECTION_MODE, |
|
| 99 | 104 |
|
| 100 | 105 |
switch calculateParams.VOXEL_SELECTION_MODE |
| 101 | 106 |
case VOXEL_SELECTION_MODE_DEF.manualGui |
| 102 |
- subjectParams.voxelList = parseVoxelList(paramModel,SubjectID); |
|
| 107 |
+ parsedVoxelList = parseVoxelList(paramModel,SubjectID); |
|
| 108 |
+ = transformVoxelList(parsedVoxelList); |
|
| 109 |
+ |
|
| 103 | 110 |
|
| 104 | 111 |
case VOXEL_SELECTION_MODE_DEF.roiImage |
| 105 |
- subjectParams.voxelList = readRoiImage(); |
|
| 112 |
+ subjectParams.voxelList = readRoiImage(); % image for subject! |
|
| 106 | 113 |
end |
| 107 | 114 |
|
| 108 | 115 |
|
| ... | ... |
@@ -1,4 +1,4 @@ |
| 1 |
-function fileList = getImageFileList(des,use_unsmoothed_hack) |
|
| 1 |
+function fileList = getImageFileList(des,use_smoothed_image_hack) |
|
| 2 | 2 |
|
| 3 | 3 |
global USE_DRIVE_CHECK_HACK; |
| 4 | 4 |
|
| ... | ... |
@@ -12,7 +12,7 @@ if USE_DRIVE_CHECK_HACK |
| 12 | 12 |
end; |
| 13 | 13 |
end |
| 14 | 14 |
end |
| 15 |
-if use_unsmoothed_hack |
|
| 15 |
+if ~use_smoothed_image_hack |
|
| 16 | 16 |
for z=1:nFiles % Change smoothed Filename - HACK! |
| 17 | 17 |
% D:....SUBJECTID\session\swfanders... |
| 18 | 18 |
% D:....SUBJECTID\session\wfanders... |
| ... | ... |
@@ -166,7 +166,8 @@ end |
| 166 | 166 |
function cbRunSVM(src,evnt,model) |
| 167 | 167 |
display('RUN');
|
| 168 | 168 |
if isSane(model) |
| 169 |
- classify(model) |
|
| 169 |
+% classify(model) |
|
| 170 |
+ main('all',model);
|
|
| 170 | 171 |
else |
| 171 | 172 |
error('spmtoolbox:SVMCrossVal:paramcheck','please verify all parameters');
|
| 172 | 173 |
end |
| ... | ... |
@@ -1,24 +1,4 @@ |
| 1 |
-function voxelList = readRoiImage() |
|
| 2 |
- |
|
| 3 |
-Vm = spm_vol(spm_select([1 Inf],'image','Select ROI image')); |
|
| 4 |
-nRoiFiles = size(Vm,2); |
|
| 5 |
- |
|
| 6 |
-% for iRoiFile = 1:nRoiFiles |
|
| 7 |
-% x = []; y = []; z = []; |
|
| 8 |
-% [x1 y1] = ndgrid(1:V(k).dim(1),1:V(k).dim(2)); |
|
| 9 |
-% for p = 1:V(k).dim(3) % resample mask Vm(iRoiFile) in space of V(k) |
|
| 10 |
-% B = spm_matrix([0 0 -p 0 0 0 1 1 1]); |
|
| 11 |
-% M = inv(B*inv(V(k).mat)*Vm(iRoiFile).mat); |
|
| 12 |
-% msk = find(spm_slice_vol(Vm(iRoiFile),M,V(k).dim(1:2),0)); |
|
| 13 |
-% if ~isempty(msk) |
|
| 14 |
-% z1 = p*ones(size(msk(:))); |
|
| 15 |
-% x = [x; x1(msk(:))]; |
|
| 16 |
-% y = [y; y1(msk(:))]; |
|
| 17 |
-% z = [z; z1]; |
|
| 18 |
-% end; |
|
| 19 |
-% end; |
|
| 20 |
-% |
|
| 21 |
-% end |
|
| 22 |
-voxelList = Vm; |
|
| 23 |
- |
|
| 1 |
+function imageList = readRoiImage(formatstring) |
|
| 2 |
+wd = 'C:\Dokumente und Einstellungen\Christoph\Eigene Dateien\Diplomarbeit\data'; |
|
| 3 |
+imageList = spm_vol(spm_select([1 Inf],'image',formatstring,[],wd)); |
|
| 24 | 4 |
end |
| 25 | 5 |
\ No newline at end of file |
| ... | ... |
@@ -1,18 +1,25 @@ |
| 1 | 1 |
function spm_SVMCrossVal(varargin) |
| 2 | 2 |
|
| 3 | 3 |
%define global constants |
| 4 |
-global USE_DRIVE_CHECK_HACK; |
|
| 5 |
-USE_DRIVE_CHECK_HACK = 1; %enables subroutine to check if image path starts with 'D' |
|
| 6 |
- |
|
| 7 |
-global CROSSVAL_METHOD_DEF; |
|
| 8 |
-CROSSVAL_METHOD_DEF.svmcrossval = 'svm crossval'; |
|
| 9 |
-CROSSVAL_METHOD_DEF.classPerformance = 'svm class performance'; |
|
| 10 |
-CROSSVAL_METHOD_DEF.crossSubject = 'svm across subject testing'; |
|
| 11 |
-CROSSVAL_METHOD_DEF.somTraining = 'som Training'; |
|
| 12 |
- |
|
| 13 |
-global VOXEL_SELECTION_MODE_DEF; |
|
| 14 |
-VOXEL_SELECTION_MODE_DEF.manualGui = 'manually defined in GUI'; |
|
| 15 |
-VOXEL_SELECTION_MODE_DEF.roiImage = 'use ROI image and popup image selector'; |
|
| 4 |
+global SVMCROSSVAL_USE_DRIVE_CHECK_HACK; |
|
| 5 |
+%enables subroutine to check if image path starts with 'D' |
|
| 6 |
+SVMCROSSVAL_USE_DRIVE_CHECK_HACK = 1; |
|
| 7 |
+ |
|
| 8 |
+global SVMCROSSVAL_CROSSVAL_METHOD_DEF; |
|
| 9 |
+% supported classification methods |
|
| 10 |
+SVMCROSSVAL_CROSSVAL_METHOD_DEF.svmcrossval = 'svm crossval'; |
|
| 11 |
+SVMCROSSVAL_CROSSVAL_METHOD_DEF.classPerformance = 'svm class performance'; |
|
| 12 |
+SVMCROSSVAL_CROSSVAL_METHOD_DEF.crossSubject = 'svm across subject testing'; |
|
| 13 |
+SVMCROSSVAL_CROSSVAL_METHOD_DEF.somTraining = 'som Training'; |
|
| 14 |
+ |
|
| 15 |
+global SVMCROSSVAL_VOXEL_SELECTION_MODE_DEF; |
|
| 16 |
+% supported voxel selection methods |
|
| 17 |
+SVMCROSSVAL_VOXEL_SELECTION_MODE_DEF.manualGui = 'manually defined in GUI'; |
|
| 18 |
+SVMCROSSVAL_VOXEL_SELECTION_MODE_DEF.roiImage = 'use ROI image by pop-up image selector'; |
|
| 19 |
+ |
|
| 20 |
+global SVMCROSSVAL_SUBJECT_PREFIX; |
|
| 21 |
+% internally used to prefix subject-ids starting with numbers. |
|
| 22 |
+SVMCROSSVAL_SUBJECT_PREFIX = 'subject'; |
|
| 16 | 23 |
|
| 17 | 24 |
switch nargin |
| 18 | 25 |
case 0 |
| 19 | 26 |