Christoph Budziszewski commited on 2009-03-02 18:28:41
Zeige 11 geänderte Dateien mit 78 Einfügungen und 150 Löschungen.
git-svn-id: https://svn.discofish.de/MATLAB/spmtoolbox/SVMCrossVal@140 83ab2cfd-5345-466c-8aeb-2b2739fb922d
| ... | ... |
@@ -19,4 +19,7 @@ SVMCROSSVAL_VOXEL_SELECTION_MODE_DEF.roiImage = 'use ROI image by pop-up ima |
| 19 | 19 |
global SVMCROSSVAL_SUBJECT_PREFIX; |
| 20 | 20 |
% internally used to prefix subject-ids starting with numbers. |
| 21 | 21 |
SVMCROSSVAL_SUBJECT_PREFIX = 'subject'; |
| 22 |
+ |
|
| 23 |
+global SVMCROSSVAL_SUBJECTSTRUCT_NAME; |
|
| 24 |
+SVMCROSSVAL_SUBJECTSTRUCT_NAME = 'subjectStruct'; |
|
| 22 | 25 |
end |
| 23 | 26 |
\ No newline at end of file |
| ... | ... |
@@ -1,74 +1,23 @@ |
| 1 |
-% function [decodePerformance rawTimecourse ] = calculateDecodePerformance(des,timeLineStart, timeLineEnd, decodeDuration, svmargs, conditionList, sessionList, voxelList, classList, labelMap,normalize) |
|
| 2 |
-function outputStruct = calculateDecodePerformance(timeline,inputStruct,subjectParams) |
|
| 3 |
- |
|
| 4 |
-global CROSSVAL_METHOD_DEF; |
|
| 5 |
- |
|
| 6 |
- |
|
| 7 |
-addpath 'libsvm-mat-2.88-1'; |
|
| 8 |
- |
|
| 9 |
-% CROSSVAL_METHOD_DEF = inputStruct.CROSSVAL_METHOD_DEF; |
|
| 10 |
-METHOD = inputStruct.CROSSVAL_METHOD; |
|
| 11 |
- |
|
| 12 |
-RANDOMIZE_DATAPOINTS = inputStruct.RANDOMIZE; |
|
| 13 |
- |
|
| 14 |
-% SubjectID = subjectParams.SubjectID; |
|
| 15 |
-% namehelper = subjectParams.namehelper; |
|
| 16 |
-voxelList = subjectParams.voxelList; |
|
| 17 |
-des = subjectParams.des; |
|
| 18 |
- |
|
| 1 |
+function outputStruct = calculateDecodePerformance(timeline,subjectStruct,model) |
|
| 19 | 2 |
outputStruct = struct; |
| 3 |
+RANDOMIZE_DATAPOINTS = 0; |
|
| 20 | 4 |
|
| 21 |
-svmargs = inputStruct.svmargs; |
|
| 22 |
-sessionList = inputStruct.sessionList; |
|
| 23 | 5 |
|
| 24 |
-% classList = inputStruct.classList; |
|
| 25 |
-% labelMap = inputStruct.labelMap; |
|
| 26 | 6 |
eventList = inputStruct.eventList; |
| 27 | 7 |
|
| 28 | 8 |
timeLineStart = timeline.frameShiftStart; |
| 29 | 9 |
timeLineEnd = timeline.frameShiftEnd; |
| 30 |
-% decodeDuration = timeline.decodeDuration; |
|
| 31 |
-% globalStart = timeline.psthStart; |
|
| 32 |
-% globalEnd = timeline.psthEnd; |
|
| 33 |
-% baselineStart = timeline.baselineStart; |
|
| 34 |
-% baselineEnd = timeline.baselineEnd; |
|
| 35 |
- |
|
| 36 |
- |
|
| 37 |
-minPerformance = inf; |
|
| 38 |
-maxPerformance = -inf; |
|
| 39 | 10 |
|
| 40 |
-subjectDir = ''; |
|
| 41 |
-sessionDirList = sessionList2DirList(sessionList) ; |
|
| 42 |
-mask = '^fandersen.*img$'; |
|
| 43 |
-imageFiles = getImageFileList(subjectDir,sessionDirList,mask); |
|
| 44 |
- |
|
| 45 |
- |
|
| 46 |
-disp('press key');
|
|
| 47 |
-pause |
|
| 48 |
- |
|
| 49 |
-extr = calculateImageData(imageFiles,voxelList); |
|
| 50 |
- |
|
| 51 |
-nVoxel = size(voxelList,1); |
|
| 52 |
- |
|
| 53 |
-calculatePstOpts = struct; |
|
| 54 |
-calculatePstOpts.des = des; |
|
| 55 |
-calculatePstOpts.eventList = eventList; |
|
| 56 |
-calculatePstOpts.sessionList = sessionList; |
|
| 11 |
+% for iVoxel = 1:nVoxel |
|
| 12 |
+% rawdata = []; |
|
| 13 |
+% for iImage = 1:length(extr); |
|
| 14 |
+% tmp = extr(iImage); |
|
| 15 |
+% rawdata = [rawdata tmp.dat(iVoxel)]; |
|
| 16 |
+% end |
|
| 17 |
+% pst{iVoxel} = calculatePST(timeline,calculatePstOpts,rawdata);
|
|
| 18 |
+% end |
|
| 57 | 19 |
|
| 58 |
-for iVoxel = 1:nVoxel |
|
| 59 |
- rawdata = []; |
|
| 60 |
- for iImage = 1:length(extr); |
|
| 61 |
- tmp = extr(iImage); |
|
| 62 |
- rawdata = [rawdata tmp.dat(iVoxel)]; |
|
| 63 |
- end |
|
| 64 |
- pst{iVoxel} = calculatePST(timeline,calculatePstOpts,rawdata);
|
|
| 65 |
-end |
|
| 66 | 20 |
|
| 67 |
-% for voxel = 1:size(voxelList,1) % [[x;x],[y;y],[z;z]] |
|
| 68 |
-% extr = calculateImageData(imageFiles,voxelList(voxel,:)); |
|
| 69 |
-% rawdata = cell2mat({extr.mean}); % Raw Data
|
|
| 70 |
-% pst{voxel} = calculatePST(des,globalStart,baselineStart,baselineEnd,globalEnd,eventList,rawdata,sessionList);
|
|
| 71 |
-% end |
|
| 72 | 21 |
|
| 73 | 22 |
timePointArgs.pst = pst; |
| 74 | 23 |
|
| ... | ... |
@@ -89,45 +38,8 @@ for index = 1:timeLineEnd-timeLineStart+1 |
| 89 | 38 |
svmlabel = svmlabel(rndindex); |
| 90 | 39 |
end |
| 91 | 40 |
|
| 92 |
- switch METHOD; |
|
| 93 |
- case CROSSVAL_METHOD_DEF.svmcrossval |
|
| 94 |
- |
|
| 95 |
- performance = svmtrain(svmlabel, svmdata, svmargs); |
|
| 96 |
- |
|
| 97 |
- minPerformance = min(minPerformance,performance); |
|
| 98 |
- maxPerformance = max(maxPerformance,performance); |
|
| 99 |
- |
|
| 100 |
- decodePerformance = [decodePerformance; performance]; |
|
| 101 |
- |
|
| 102 |
- case CROSSVAL_METHOD_DEF.classPerformance |
|
| 103 |
- |
|
| 104 |
- newsvmopt = killCrossvalOpt(svmargs); |
|
| 105 |
- |
|
| 106 |
- model = svmtrain(svmlabel,svmdata,newsvmopt); |
|
| 107 |
- classperformance = []; |
|
| 108 |
- for class = unique(svmlabel)'; |
|
| 109 |
- |
|
| 110 |
- filterindex = find(class == svmlabel); |
|
| 111 |
- testing_label = svmlabel(filterindex); |
|
| 112 |
- testing_data = svmdata(filterindex); |
|
| 113 |
- [plabel accuracy dvalue] = svmpredict(testing_label,testing_data,model,''); |
|
| 114 |
- |
|
| 115 |
- classperformance = [classperformance accuracy(1)]; |
|
| 116 |
- end |
|
| 117 |
- decodePerformance = [decodePerformance; classperformance]; |
|
| 118 |
- |
|
| 119 |
- case CROSSVAL_METHOD_DEF.somTraining |
|
| 41 |
+ decodePerformance = [decodePerformance; svm_single_crossval(svmlabel,svmdata,svmopts)]; |
|
| 120 | 42 |
|
| 121 |
- display('SOM TRAINING');
|
|
| 122 |
- addpath 'somtoolbox2'; |
|
| 123 |
- sD = som_data_struct(svmdata,'label',num2str(svmlabel)); |
|
| 124 |
- assignin('base','sD',sD);
|
|
| 125 |
- sM = som_make(sD,'msize', [3 3],'lattice', 'hexa'); |
|
| 126 |
- |
|
| 127 |
- assignin('base','sD',sD);
|
|
| 128 |
- assignin('base','sM',sM);
|
|
| 129 |
- display('type ''figure'' before visualisation');
|
|
| 130 |
- end |
|
| 131 | 43 |
|
| 132 | 44 |
end |
| 133 | 45 |
|
| ... | ... |
@@ -139,19 +51,5 @@ outputStruct.minPerformance = minPerformance; |
| 139 | 51 |
outputStruct.maxPerformance = maxPerformance; |
| 140 | 52 |
end |
| 141 | 53 |
|
| 142 |
-function opts = killCrossvalOpt(svmopt) |
|
| 143 |
-opts = ''; |
|
| 144 |
-idx1 = 1; |
|
| 145 |
-for idx2=strfind(svmopt,' -') |
|
| 146 |
- if idx1 ~= strfind(svmopt,' -v') |
|
| 147 |
- opts = strcat(opts,svmopt(idx1:idx2)); |
|
| 148 |
- end |
|
| 149 |
- idx1=idx2; |
|
| 150 |
- if idx2==max(strfind(svmopt,' -')) |
|
| 151 |
- opts = strcat(opts,svmopt(idx2:end)); |
|
| 152 |
- end |
|
| 153 |
-end |
|
| 154 |
-end |
|
| 155 |
- |
|
| 156 | 54 |
|
| 157 | 55 |
|
| ... | ... |
@@ -38,13 +38,20 @@ switch task |
| 38 | 38 |
roiargs.sessionList = 1:3; |
| 39 | 39 |
roiargs.eventList = classDef.eventMatrix; |
| 40 | 40 |
|
| 41 |
- |
|
| 42 |
- assignin('base','roiargs',roiargs);
|
|
| 43 |
- |
|
| 44 | 41 |
runROIImageMaskMode(roiargs); |
| 45 | 42 |
|
| 46 | 43 |
case 'FBS' |
| 47 | 44 |
disp('FBS')
|
| 45 |
+ |
|
| 46 |
+ case 'SVM' |
|
| 47 |
+ disp('classify with svm');
|
|
| 48 |
+ |
|
| 49 |
+ case 'X-SVM' |
|
| 50 |
+ |
|
| 51 |
+ case 'SOM' |
|
| 52 |
+ |
|
| 53 |
+ case 'X-SOM' |
|
| 54 |
+ |
|
| 48 | 55 |
end |
| 49 | 56 |
|
| 50 | 57 |
% disp('warings restored');
|
| ... | ... |
@@ -1,4 +1,7 @@ |
| 1 | 1 |
function runCoordTable(args) |
| 2 |
+ |
|
| 3 |
+global SVMCROSSVAL_SUBJECTSTRUCT_NAME; |
|
| 4 |
+ |
|
| 2 | 5 |
disp('run coord table')
|
| 3 | 6 |
|
| 4 | 7 |
subjects = args.subjects; |
| ... | ... |
@@ -37,33 +40,5 @@ function runCoordTable(args) |
| 37 | 40 |
disp(sprintf('done %g // %g',s,nSubjects));
|
| 38 | 41 |
end |
| 39 | 42 |
|
| 40 |
- assignin('base','subjectStruct',subjectStruct);
|
|
| 43 |
+ assignin('base',SVMCROSSVAL_SUBJECTSTRUCT_NAME,subjectStruct);
|
|
| 41 | 44 |
end |
| 42 |
- |
|
| 43 |
- |
|
| 44 |
- |
|
| 45 |
- |
|
| 46 |
-% |
|
| 47 |
-% % decode = claculateMultiSubjectDecodePerformance(timelineParams,calculateParams,paramModel); |
|
| 48 |
-% |
|
| 49 |
-% display('Finished calculations.');
|
|
| 50 |
-% display('Plotting...');
|
|
| 51 |
-% |
|
| 52 |
-% plotParams = struct; |
|
| 53 |
-% |
|
| 54 |
-% % plotParams.SVMCROSSVAL_CROSSVAL_METHOD_DEF = SVMCROSSVAL_CROSSVAL_METHOD_DEF; |
|
| 55 |
-% plotParams.CROSSVAL_METHOD = calculateParams.CROSSVAL_METHOD; |
|
| 56 |
-% |
|
| 57 |
-% plotParams.nClasses = length(calculateParams.classList); |
|
| 58 |
-% |
|
| 59 |
-% plotParams.decodePerformance = decode.decodePerformance; |
|
| 60 |
-% plotParams.rawTimeCourse = decode.rawTimeCourse; |
|
| 61 |
-% plotParams.SubjectID = subjectSelection; |
|
| 62 |
-% plotParams.smoothed = boolToYesNoString(calculateParams.smoothed); |
|
| 63 |
-% |
|
| 64 |
-% assignin('base','plotParams',plotParams);
|
|
| 65 |
-% % plotDecodePerformance(params.psthStart,params.psthEnd,params.nClasses,decode.decodeTable,params.frameShiftStart,params.frameShiftEnd,decode.rawTimeCourse); |
|
| 66 |
-% plotDecodePerformance(timelineParams,plotParams); |
|
| 67 |
-% |
|
| 68 |
-% display('all done.');
|
|
| 69 |
-% |
| ... | ... |
@@ -1,5 +1,7 @@ |
| 1 | 1 |
function runROIImageMaskMode(args) |
| 2 | 2 |
|
| 3 |
+global SVMCROSSVAL_SUBJECTSTRUCT_NAME; |
|
| 4 |
+ |
|
| 3 | 5 |
subjects = args.subjects; |
| 4 | 6 |
|
| 5 | 7 |
nSubjects = size(subjects); |
| ... | ... |
@@ -47,7 +49,7 @@ for s = 1:nSubjects |
| 47 | 49 |
disp('done');
|
| 48 | 50 |
end |
| 49 | 51 |
|
| 50 |
-assignin('base','subjectStruct',subjectStruct);
|
|
| 52 |
+assignin('base',SVMCROSSVAL_SUBJECTSTRUCT_NAME,subjectStruct);
|
|
| 51 | 53 |
|
| 52 | 54 |
end |
| 53 | 55 |
|
| ... | ... |
@@ -0,0 +1,16 @@ |
| 1 |
+function decodePerformance = svm_crossval(svmlabel,svmdata,svmopts) |
|
| 2 |
+addpath 'libsvm-mat-2.88-1'; |
|
| 3 |
+ |
|
| 4 |
+svmmodel = svmtrain(svmlabel,svmdata,svmopts); |
|
| 5 |
+classperformance = []; |
|
| 6 |
+for class = unique(svmlabel)'; |
|
| 7 |
+ |
|
| 8 |
+ filterindex = find(class == svmlabel); |
|
| 9 |
+ testing_label = svmlabel(filterindex); |
|
| 10 |
+ testing_data = svmdata(filterindex); |
|
| 11 |
+ [plabel accuracy dvalue] = svmpredict(testing_label,testing_data,svmmodel,''); |
|
| 12 |
+ |
|
| 13 |
+ classperformance = [classperformance accuracy(1)]; |
|
| 14 |
+end |
|
| 15 |
+decodePerformance = [decodePerformance; classperformance]; |
|
| 16 |
+end |
|
| 0 | 17 |
\ No newline at end of file |
| ... | ... |
@@ -0,0 +1,12 @@ |
| 1 |
+function [sD sM] = train_som(svmlabel, svmdata, somOptions) |
|
| 2 |
+ |
|
| 3 |
+display('SOM TRAINING');
|
|
| 4 |
+addpath 'somtoolbox2'; |
|
| 5 |
+sD = som_data_struct(svmdata,'label',num2str(svmlabel)); |
|
| 6 |
+assignin('base','sD',sD);
|
|
| 7 |
+sM = som_make(sD,'msize', [3 3],'lattice', 'hexa'); |
|
| 8 |
+ |
|
| 9 |
+assignin('base','sD',sD);
|
|
| 10 |
+assignin('base','sM',sM);
|
|
| 11 |
+display('type ''figure'' before visualisation');
|
|
| 12 |
+end |
|
| 0 | 13 |
\ No newline at end of file |
| ... | ... |
@@ -91,7 +91,7 @@ function model = mcb_load(src,evnt,model) |
| 91 | 91 |
disp('LOAD');
|
| 92 | 92 |
[file path] = uigetfile('*.mat','Load Params ...',model.baseDir);
|
| 93 | 93 |
l = load(fullfile(path,file)); |
| 94 |
-assignin('base','l',l);
|
|
| 94 |
+% assignin('base','l',l);
|
|
| 95 | 95 |
model = setTimeLineParams(model,l.timeLine); |
| 96 | 96 |
model = setClassDefString(model,l.classDefString); |
| 97 | 97 |
model = setCoordDefString(model,l.coordDefString); |
| ... | ... |
@@ -319,12 +319,10 @@ function model = createFirstStepPanel(model,parent,DEFAULT) |
| 319 | 319 |
'Units','normalized','Position',[0.66 0 0.33 1]); |
| 320 | 320 |
set(btnRunButton3,'Callback',{@cbRunPreprocessing,model,'ROI'}); % set here, because of model.
|
| 321 | 321 |
set(btnRunButton3,'Enable','on'); |
| 322 |
- |
|
| 323 |
- assignin('base','model',model);
|
|
| 324 | 322 |
end |
| 325 | 323 |
|
| 326 | 324 |
function cbRunPreprocessing(src,evnt,model,task) |
| 327 |
-main(model,task) |
|
| 325 |
+main(model,task); |
|
| 328 | 326 |
end |
| 329 | 327 |
|
| 330 | 328 |
function label = createLabel(parent, pos, labelText) |
| 331 | 329 |