Christoph Budziszewski commited on 2009-01-08 11:44:25
Zeige 5 geänderte Dateien mit 248 Einfügungen und 257 Löschungen.
git-svn-id: https://svn.discofish.de/MATLAB/spmtoolbox/SVMCrossVal@102 83ab2cfd-5345-466c-8aeb-2b2739fb922d
... | ... |
@@ -3,6 +3,8 @@ function outputStruct = calculateDecodePerformance(inputStruct,SubjectID) |
3 | 3 |
|
4 | 4 |
addpath 'libsvm-mat-2.88-1'; |
5 | 5 |
|
6 |
+SINGLE = 1; |
|
7 |
+ |
|
6 | 8 |
outputStruct = struct; |
7 | 9 |
|
8 | 10 |
namehelper = strcat('s',SubjectID); |
... | ... |
@@ -66,6 +68,8 @@ maxPerformance = -inf; |
66 | 68 |
|
67 | 69 |
svmdata = tmp(:,2:size(tmp,2)); |
68 | 70 |
svmlabel = tmp(:,1); |
71 |
+ |
|
72 |
+ if SINGLE |
|
69 | 73 |
performance = svmtrain(svmlabel, svmdata, svmargs); |
70 | 74 |
|
71 | 75 |
minPerformance = min(minPerformance,performance); |
... | ... |
@@ -74,221 +78,13 @@ maxPerformance = -inf; |
74 | 78 |
decodePerformance = [decodePerformance; performance]; |
75 | 79 |
end |
76 | 80 |
|
81 |
+ end |
|
82 |
+ |
|
77 | 83 |
outputStruct.decodePerformance = decodePerformance; |
78 | 84 |
outputStruct.svmdata = svmdata; |
79 | 85 |
outputStruct.svmlabel = svmlabel; |
80 | 86 |
outputStruct.rawTimeCourse = pst; |
81 | 87 |
outputStruct.minPerformance = minPerformance; |
82 | 88 |
outputStruct.maxPerformance = maxPerformance; |
83 |
- |
|
84 |
-% display(sprintf('Min CrossVal Accuracy: %g%% \t Max CrossVal Accuracy: %g%%',minPerformance,maxPerformance)); |
|
85 |
-end |
|
86 |
- |
|
87 |
- |
|
88 |
-function extr = calculateImageData(voxelList,des,smoothed) |
|
89 |
- |
|
90 |
-dtype='PSTH'; |
|
91 |
- |
|
92 |
-switch dtype |
|
93 |
- case 'PSTH' |
|
94 |
- V=des.xY.VY; |
|
95 |
- case 'betas' |
|
96 |
- V=des.Vbeta; |
|
97 |
-end; |
|
98 |
- |
|
99 |
-if V(1).fname(1)~='D' |
|
100 |
- for z=1:length(V) % Change Drive Letter!\ |
|
101 |
- V(z).fname(1) = 'D'; |
|
102 |
- end; |
|
103 |
-end |
|
104 |
- |
|
105 |
-if (~smoothed) |
|
106 |
- for z=1:length(V) % Change Drive Letter!\ |
|
107 |
- % D:....SUBJECTID\session\swfanders... |
|
108 |
- % D:....SUBJECTID\session\wfanders... |
|
109 |
- tmp = findstr(filesep,V(z).fname); |
|
110 |
- V(z).fname = strcat(V(z).fname(1:tmp(end)),V(z).fname(tmp(end)+2:end)); |
|
111 |
- end; |
|
112 |
-end |
|
113 |
- |
|
114 |
-% rad = 0; % one voxel |
|
115 |
-% opt = 1; % xyz coordinates [mm] |
|
116 |
- |
|
117 |
- |
|
118 |
-vox = voxelList; |
|
119 |
-nRoi = size(vox,1); |
|
120 |
- |
|
121 |
-nImg = numel(V); |
|
122 |
- |
|
123 |
-for k=1:nImg |
|
124 |
- extr(k) = struct(... |
|
125 |
- 'val', repmat(NaN, [1 nRoi]),... |
|
126 |
- 'mean', repmat(NaN, [1 nRoi]),... |
|
127 |
- 'sum', repmat(NaN, [1 nRoi]),... |
|
128 |
- 'nvx', repmat(NaN, [1 nRoi]),... |
|
129 |
- 'posmm', repmat(NaN, [3 nRoi]),... |
|
130 |
- 'posvx', repmat(NaN, [3 nRoi])); |
|
131 |
- |
|
132 |
- roicenter = round(inv(V(k).mat)*[vox, ones(nRoi,1)]'); |
|
133 |
- |
|
134 |
- for l = 1:nRoi |
|
135 |
- |
|
136 |
-% if rad==0 |
|
137 |
- x = roicenter(1,l); |
|
138 |
- y = roicenter(2,l); |
|
139 |
- z = roicenter(3,l); |
|
140 |
-% else |
|
141 |
-% tmp = spm_imatrix(V(k).mat); |
|
142 |
-% vdim = tmp(7:9); |
|
143 |
-% vxrad = ceil((rad*ones(1,3))./(ones(nRoi,1)*vdim))'; |
|
144 |
-% [x y z] = ndgrid(-vxrad(1,l):sign(vdim(1)):vxrad(1,l), ... |
|
145 |
-% -vxrad(2,l):sign(vdim(2)):vxrad(2,l), ... |
|
146 |
-% -vxrad(3,l):sign(vdim(3)):vxrad(3,l)); |
|
147 |
-% sel = (x./vxrad(1,l)).^2 + (y./vxrad(2,l)).^2 + ... |
|
148 |
-% (z./vxrad(3,l)).^2 <= 1; |
|
149 |
-% x = roicenter(1,l)+x(sel(:)); |
|
150 |
-% y = roicenter(2,l)+y(sel(:)); |
|
151 |
-% z = roicenter(3,l)+z(sel(:)); |
|
152 |
-% end; |
|
153 |
- |
|
154 |
- |
|
155 |
- dat = spm_sample_vol(V(k), x, y, z,0); |
|
156 |
- [maxv maxi] = max(dat); |
|
157 |
- tmp = V(k).mat*[x(maxi); y(maxi); z(maxi);1]; % Max Pos |
|
158 |
- extr(k).val(l) = maxv; |
|
159 |
- extr(k).sum(l) = sum(dat); |
|
160 |
- extr(k).mean(l) = nanmean(dat); |
|
161 |
- extr(k).nvx(l) = numel(dat); |
|
162 |
- extr(k).posmm(:,l) = tmp(1:3); |
|
163 |
- extr(k).posvx(:,l) = [x(maxi); y(maxi); z(maxi)]; % Max Pos |
|
164 |
- end; |
|
165 |
- |
|
166 |
-end; |
|
167 | 89 |
end |
168 | 90 |
|
169 |
-% disp(sprintf('Extracted at %.1f %.1f %.1f [xyz(mm)], average of %i voxel(s) [%.1fmm radius Sphere]',vox,length(x),rad)); |
|
170 |
- |
|
171 |
-function pst = calculatePST(des,globalStart,baselineStart,baselineEnd,globalEnd,eventList,data,sessionList) |
|
172 |
- bstart = baselineStart; |
|
173 |
- bend = baselineEnd; |
|
174 |
- edur = 12; |
|
175 |
- pre = globalStart; |
|
176 |
- post = globalEnd; |
|
177 |
- res = 1; |
|
178 |
- |
|
179 |
- normz = 'file'; |
|
180 |
- pm = 0; |
|
181 |
- |
|
182 |
- lsess = getNumberOfScans(des); |
|
183 |
- nSessions = getNumberOfSessions(des); |
|
184 |
- tr = 2; |
|
185 |
- |
|
186 |
- [evntrow evntcol]=size(eventList); |
|
187 |
- |
|
188 |
- |
|
189 |
- hsec=str2num(des.xsDes.High_pass_Filter(8:end-3)); % Highpass filter [sec] from SPM.mat |
|
190 |
- |
|
191 |
- if strcmp(des.xBF.UNITS,'secs') |
|
192 |
- unitsecs=1; |
|
193 |
- end; |
|
194 |
- |
|
195 |
- nScansPerSession=getNumberOfScans(des); |
|
196 |
- %stime=[0:tr:max(nScansPerSession)*tr+post-tr]; % Stimulus time for raw data plot |
|
197 |
- stime=0:tr:max(nScansPerSession)*tr+round(post/tr)*tr-tr; % Stimulus time for raw data plot |
|
198 |
- |
|
199 |
- |
|
200 |
- |
|
201 |
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
202 |
- % RUN |
|
203 |
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
204 |
- |
|
205 |
- |
|
206 |
- % Digital Highpass |
|
207 |
- Rp=0.5; |
|
208 |
- Rs=20; |
|
209 |
- NO=1; |
|
210 |
- Wp=1/((1/2/tr)/(1/hsec)); |
|
211 |
- [B, A] = ellip(NO,Rp,Rs,Wp,'high'); |
|
212 |
- |
|
213 |
- sdata(1:max(nScansPerSession)+round(post/tr),1:nSessions)=nan; % Open Data Matrix |
|
214 |
- for z=1:nSessions % Fill Data Matrix sessionwise |
|
215 |
- sdata(1:nScansPerSession(z),z)=data(sum(nScansPerSession(1:z))-nScansPerSession(z)+1:sum(nScansPerSession(1:z)))'; |
|
216 |
- end; |
|
217 |
-% usdata=sdata; % Keep unfiltered data |
|
218 |
- |
|
219 |
- sdatamean=nanmean(nanmean(sdata(:,:))); |
|
220 |
- for z=1:nSessions |
|
221 |
-% X(:,z)=[1:1:max(nScansPerSession)]'; % #Volume |
|
222 |
- sdata(1:nScansPerSession(z),z)=filtfilt(B,A,sdata(1:nScansPerSession(z),z)); %Filter Data (Highpass) |
|
223 |
- end; |
|
224 |
- sdata=sdata+sdatamean; |
|
225 |
- |
|
226 |
- |
|
227 |
- %%%%Parametric Modulation Modus%%%% |
|
228 |
- if pm %Find Parameters for Event of Interest |
|
229 |
- [imods modss mods erow evntrow eventList] = getParametricMappingEvents(eventList,evntrow,des,pmf); |
|
230 |
- end; |
|
231 |
- %%%%PM%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
232 |
- |
|
233 |
- |
|
234 |
- for zr=1:evntrow |
|
235 |
- n{zr}=0; |
|
236 |
- nn{zr}=0; |
|
237 |
- nnn{zr}=0; |
|
238 |
- sstart{zr}=1; |
|
239 |
- end; |
|
240 |
- |
|
241 |
- |
|
242 |
- sesst0=0; |
|
243 |
- for sessionID=sessionList |
|
244 |
- if sessionID>1 |
|
245 |
- sesst0(sessionID)=sum(lsess(1:sessionID-1))*tr; |
|
246 |
- end; |
|
247 |
- for zr=1:evntrow %LABEL NUMBER, EVENT GROUP |
|
248 |
- sstart{zr}=n{zr}+1; |
|
249 |
- for ze=1:evntcol % EVENT INDEX in EventList |
|
250 |
- if ze==1 || (ze>1 && eventList(zr,ze)~=eventList(zr,ze-1)) |
|
251 |
- for zz=1:length(des.Sess(sessionID).U(eventList(zr,ze)).ons) % EVENT REPETITION NUMBER |
|
252 |
- if ~unitsecs |
|
253 |
- des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)=(des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)-1)*tr; |
|
254 |
- des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)=(des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)-1)*tr; |
|
255 |
- end; |
|
256 |
- |
|
257 |
- nnn{zr}=nnn{zr}+1; % INFO for rawdataplot start |
|
258 |
- if des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)<edur |
|
259 |
- mev{zr}(nnn{zr},1:2)=[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+sesst0(sessionID) edur]; % modeled event [onset length] |
|
260 |
- else |
|
261 |
- mev{zr}(nnn{zr},1:2)=[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+sesst0(sessionID) des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)]; |
|
262 |
- end; % INFO for rawdataplot end |
|
263 |
- |
|
264 |
- n{zr}=n{zr}+1; |
|
265 |
- pst{zr}(n{zr},:)=interp1(stime,sdata(:,sessionID),[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+pre:res:des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+post],'linear'); |
|
266 |
- if strcmp(normz,'epoc') |
|
267 |
- bline=nanmean(pst{zr}(n{zr},round(-pre/res+(bstart)/res+1):round(-pre/res+(bend)/res+1))); |
|
268 |
- if isnan(bline) |
|
269 |
- pst{zr}(n{zr},1:-pre/res+post/res+1)=nan; |
|
270 |
- else |
|
271 |
-% nn{zr}=nn{zr}+1; |
|
272 |
- pst{zr}(n{zr},:)=(pst{zr}(n{zr},:)-bline)/bline*100; % 'epoch-based' normalization |
|
273 |
- end; |
|
274 |
- end; |
|
275 |
- end; |
|
276 |
- end; |
|
277 |
- end; |
|
278 |
- if ~strcmp(normz,'epoc') |
|
279 |
- bline(zr)=nanmean(nanmean(pst{zr}(sstart{zr}:n{zr},-pre/res+(bstart)/res+1:-pre/res+(bend)/res+1))); |
|
280 |
- bstd(zr)=nanmean(nanstd(pst{zr}(sstart{zr}:n{zr},-pre/res+(bstart)/res+1:-pre/res+(bend)/res+1))); |
|
281 |
- nn{zr}=n{zr}; |
|
282 |
- end; |
|
283 |
- end; |
|
284 |
- if strcmp(normz,'filz') |
|
285 |
- for zr=1:evntrow |
|
286 |
- pst{zr}(sstart{zr}:n{zr},:)=(pst{zr}(sstart{zr}:n{zr},:)-mean(bline))/mean(bstd); % session-based z-score normalization |
|
287 |
- end; |
|
288 |
- elseif strcmp(normz,'file') |
|
289 |
- for zr=1:evntrow |
|
290 |
- pst{zr}(sstart{zr}:n{zr},:)=(pst{zr}(sstart{zr}:n{zr},:)-mean(bline))/mean(bline)*100; % session-based normalization |
|
291 |
- end; |
|
292 |
- end; |
|
293 |
- end; |
|
294 |
-end |
... | ... |
@@ -36,9 +36,6 @@ end |
36 | 36 |
calculateParams.eventList = classStruct.eventMatrix; %[9,11,13; 10,12,14]; |
37 | 37 |
% calculateParams.eventList = getPSTEventMatrix(calculateParams.labelMap); |
38 | 38 |
|
39 |
-% params = struct; |
|
40 |
-% params.nClasses = 2; |
|
41 |
- |
|
42 | 39 |
subjectSelection = getSubjectIDString(paramModel); |
43 | 40 |
decode = struct; |
44 | 41 |
decode.decodePerformance = []; |
... | ... |
@@ -53,13 +50,11 @@ end |
53 | 50 |
display('... done.'); |
54 | 51 |
|
55 | 52 |
%% calculate |
56 |
- display(sprintf('calculating cross-validation performance time-shift for Subject %s. Please Wait. ...',SubjectID)); |
|
57 | 53 |
calculateParams.(namehelper).des = spm.SPM; |
58 | 54 |
calculateParams.(namehelper).voxelList = parseVoxelList(paramModel,SubjectID); |
59 |
- |
|
60 | 55 |
assignin('base','calculateParams',calculateParams); |
61 | 56 |
|
62 |
- % [decodeTable rawTimeCourse] = calculateDecodePerformance(spm,params.frameShiftStart,params.frameShiftEnd,params.xTimeWindow,params.svmopts,1:4,params.sessionList,params.voxelList,params.classList,params.labelMap,params.normalize); |
|
57 |
+ display(sprintf('calculating cross-validation performance time-shift for Subject %s. Please Wait. ...',SubjectID)); |
|
63 | 58 |
display('switching off all warnings'); |
64 | 59 |
warning_state = warning('off','all'); |
65 | 60 |
display('calculating ...'); |
... | ... |
@@ -71,9 +66,6 @@ end |
71 | 66 |
decode.decodePerformance = [decode.decodePerformance decode.(namehelper).decodePerformance]; |
72 | 67 |
decode.rawTimeCourse = [decode.rawTimeCourse decode.(namehelper).rawTimeCourse]; |
73 | 68 |
|
74 |
- |
|
75 |
-% display(sprintf('Min CrossVal Accuracy: %g%% \t Max CrossVal Accuracy: %g%%',decode.minPerformance,decode.maxPerformance)); |
|
76 |
- |
|
77 | 69 |
assignin('base','decode',decode); |
78 | 70 |
end |
79 | 71 |
|
... | ... |
@@ -0,0 +1,80 @@ |
1 |
+function extr = calculateImageData(voxelList,des,smoothed) |
|
2 |
+ |
|
3 |
+dtype='PSTH'; |
|
4 |
+ |
|
5 |
+switch dtype |
|
6 |
+ case 'PSTH' |
|
7 |
+ V=des.xY.VY; |
|
8 |
+ case 'betas' |
|
9 |
+ V=des.Vbeta; |
|
10 |
+end; |
|
11 |
+ |
|
12 |
+if V(1).fname(1)~='D' |
|
13 |
+ for z=1:length(V) % Change Drive Letter!\ |
|
14 |
+ V(z).fname(1) = 'D'; |
|
15 |
+ end; |
|
16 |
+end |
|
17 |
+ |
|
18 |
+if (~smoothed) |
|
19 |
+ for z=1:length(V) % Change Drive Letter!\ |
|
20 |
+ % D:....SUBJECTID\session\swfanders... |
|
21 |
+ % D:....SUBJECTID\session\wfanders... |
|
22 |
+ tmp = findstr(filesep,V(z).fname); |
|
23 |
+ V(z).fname = strcat(V(z).fname(1:tmp(end)),V(z).fname(tmp(end)+2:end)); |
|
24 |
+ end; |
|
25 |
+end |
|
26 |
+ |
|
27 |
+% rad = 0; % one voxel |
|
28 |
+% opt = 1; % xyz coordinates [mm] |
|
29 |
+ |
|
30 |
+ |
|
31 |
+vox = voxelList; |
|
32 |
+nRoi = size(vox,1); |
|
33 |
+ |
|
34 |
+nImg = numel(V); |
|
35 |
+ |
|
36 |
+for k=1:nImg |
|
37 |
+ extr(k) = struct(... |
|
38 |
+ 'val', repmat(NaN, [1 nRoi]),... |
|
39 |
+ 'mean', repmat(NaN, [1 nRoi]),... |
|
40 |
+ 'sum', repmat(NaN, [1 nRoi]),... |
|
41 |
+ 'nvx', repmat(NaN, [1 nRoi]),... |
|
42 |
+ 'posmm', repmat(NaN, [3 nRoi]),... |
|
43 |
+ 'posvx', repmat(NaN, [3 nRoi])); |
|
44 |
+ |
|
45 |
+ roicenter = round(inv(V(k).mat)*[vox, ones(nRoi,1)]'); |
|
46 |
+ |
|
47 |
+ for l = 1:nRoi |
|
48 |
+ |
|
49 |
+% if rad==0 |
|
50 |
+ x = roicenter(1,l); |
|
51 |
+ y = roicenter(2,l); |
|
52 |
+ z = roicenter(3,l); |
|
53 |
+% else |
|
54 |
+% tmp = spm_imatrix(V(k).mat); |
|
55 |
+% vdim = tmp(7:9); |
|
56 |
+% vxrad = ceil((rad*ones(1,3))./(ones(nRoi,1)*vdim))'; |
|
57 |
+% [x y z] = ndgrid(-vxrad(1,l):sign(vdim(1)):vxrad(1,l), ... |
|
58 |
+% -vxrad(2,l):sign(vdim(2)):vxrad(2,l), ... |
|
59 |
+% -vxrad(3,l):sign(vdim(3)):vxrad(3,l)); |
|
60 |
+% sel = (x./vxrad(1,l)).^2 + (y./vxrad(2,l)).^2 + ... |
|
61 |
+% (z./vxrad(3,l)).^2 <= 1; |
|
62 |
+% x = roicenter(1,l)+x(sel(:)); |
|
63 |
+% y = roicenter(2,l)+y(sel(:)); |
|
64 |
+% z = roicenter(3,l)+z(sel(:)); |
|
65 |
+% end; |
|
66 |
+ |
|
67 |
+ |
|
68 |
+ dat = spm_sample_vol(V(k), x, y, z,0); |
|
69 |
+ [maxv maxi] = max(dat); |
|
70 |
+ tmp = V(k).mat*[x(maxi); y(maxi); z(maxi);1]; % Max Pos |
|
71 |
+ extr(k).val(l) = maxv; |
|
72 |
+ extr(k).sum(l) = sum(dat); |
|
73 |
+ extr(k).mean(l) = nanmean(dat); |
|
74 |
+ extr(k).nvx(l) = numel(dat); |
|
75 |
+ extr(k).posmm(:,l) = tmp(1:3); |
|
76 |
+ extr(k).posvx(:,l) = [x(maxi); y(maxi); z(maxi)]; % Max Pos |
|
77 |
+ end; |
|
78 |
+ |
|
79 |
+end; |
|
80 |
+end |
|
0 | 81 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,124 @@ |
1 |
+function pst = calculatePST(des,globalStart,baselineStart,baselineEnd,globalEnd,eventList,data,sessionList) |
|
2 |
+ bstart = baselineStart; |
|
3 |
+ bend = baselineEnd; |
|
4 |
+ edur = 12; |
|
5 |
+ pre = globalStart; |
|
6 |
+ post = globalEnd; |
|
7 |
+ res = 1; |
|
8 |
+ |
|
9 |
+ normz = 'file'; |
|
10 |
+ pm = 0; |
|
11 |
+ |
|
12 |
+ lsess = getNumberOfScans(des); |
|
13 |
+ nSessions = getNumberOfSessions(des); |
|
14 |
+ tr = 2; |
|
15 |
+ |
|
16 |
+ [evntrow evntcol]=size(eventList); |
|
17 |
+ |
|
18 |
+ |
|
19 |
+ hsec=str2num(des.xsDes.High_pass_Filter(8:end-3)); % Highpass filter [sec] from SPM.mat |
|
20 |
+ |
|
21 |
+ if strcmp(des.xBF.UNITS,'secs') |
|
22 |
+ unitsecs=1; |
|
23 |
+ end; |
|
24 |
+ |
|
25 |
+ nScansPerSession=getNumberOfScans(des); |
|
26 |
+ %stime=[0:tr:max(nScansPerSession)*tr+post-tr]; % Stimulus time for raw data plot |
|
27 |
+ stime=0:tr:max(nScansPerSession)*tr+round(post/tr)*tr-tr; % Stimulus time for raw data plot |
|
28 |
+ |
|
29 |
+ |
|
30 |
+ |
|
31 |
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
32 |
+ % RUN |
|
33 |
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
34 |
+ |
|
35 |
+ |
|
36 |
+ % Digital Highpass |
|
37 |
+ Rp=0.5; |
|
38 |
+ Rs=20; |
|
39 |
+ NO=1; |
|
40 |
+ Wp=1/((1/2/tr)/(1/hsec)); |
|
41 |
+ [B, A] = ellip(NO,Rp,Rs,Wp,'high'); |
|
42 |
+ |
|
43 |
+ sdata(1:max(nScansPerSession)+round(post/tr),1:nSessions)=nan; % Open Data Matrix |
|
44 |
+ for z=1:nSessions % Fill Data Matrix sessionwise |
|
45 |
+ sdata(1:nScansPerSession(z),z)=data(sum(nScansPerSession(1:z))-nScansPerSession(z)+1:sum(nScansPerSession(1:z)))'; |
|
46 |
+ end; |
|
47 |
+% usdata=sdata; % Keep unfiltered data |
|
48 |
+ |
|
49 |
+ sdatamean=nanmean(nanmean(sdata(:,:))); |
|
50 |
+ for z=1:nSessions |
|
51 |
+% X(:,z)=[1:1:max(nScansPerSession)]'; % #Volume |
|
52 |
+ sdata(1:nScansPerSession(z),z)=filtfilt(B,A,sdata(1:nScansPerSession(z),z)); %Filter Data (Highpass) |
|
53 |
+ end; |
|
54 |
+ sdata=sdata+sdatamean; |
|
55 |
+ |
|
56 |
+ |
|
57 |
+ %%%%Parametric Modulation Modus%%%% |
|
58 |
+ if pm %Find Parameters for Event of Interest |
|
59 |
+ [imods modss mods erow evntrow eventList] = getParametricMappingEvents(eventList,evntrow,des,pmf); |
|
60 |
+ end; |
|
61 |
+ %%%%PM%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
62 |
+ |
|
63 |
+ |
|
64 |
+ for zr=1:evntrow |
|
65 |
+ n{zr}=0; |
|
66 |
+ nn{zr}=0; |
|
67 |
+ nnn{zr}=0; |
|
68 |
+ sstart{zr}=1; |
|
69 |
+ end; |
|
70 |
+ |
|
71 |
+ |
|
72 |
+ sesst0=0; |
|
73 |
+ for sessionID=sessionList |
|
74 |
+ if sessionID>1 |
|
75 |
+ sesst0(sessionID)=sum(lsess(1:sessionID-1))*tr; |
|
76 |
+ end; |
|
77 |
+ for zr=1:evntrow %LABEL NUMBER, EVENT GROUP |
|
78 |
+ sstart{zr}=n{zr}+1; |
|
79 |
+ for ze=1:evntcol % EVENT INDEX in EventList |
|
80 |
+ if ze==1 || (ze>1 && eventList(zr,ze)~=eventList(zr,ze-1)) |
|
81 |
+ for zz=1:length(des.Sess(sessionID).U(eventList(zr,ze)).ons) % EVENT REPETITION NUMBER |
|
82 |
+ if ~unitsecs |
|
83 |
+ des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)=(des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)-1)*tr; |
|
84 |
+ des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)=(des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)-1)*tr; |
|
85 |
+ end; |
|
86 |
+ |
|
87 |
+ nnn{zr}=nnn{zr}+1; % INFO for rawdataplot start |
|
88 |
+ if des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)<edur |
|
89 |
+ mev{zr}(nnn{zr},1:2)=[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+sesst0(sessionID) edur]; % modeled event [onset length] |
|
90 |
+ else |
|
91 |
+ mev{zr}(nnn{zr},1:2)=[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+sesst0(sessionID) des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)]; |
|
92 |
+ end; % INFO for rawdataplot end |
|
93 |
+ |
|
94 |
+ n{zr}=n{zr}+1; |
|
95 |
+ pst{zr}(n{zr},:)=interp1(stime,sdata(:,sessionID),[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+pre:res:des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+post],'linear'); |
|
96 |
+ if strcmp(normz,'epoc') |
|
97 |
+ bline=nanmean(pst{zr}(n{zr},round(-pre/res+(bstart)/res+1):round(-pre/res+(bend)/res+1))); |
|
98 |
+ if isnan(bline) |
|
99 |
+ pst{zr}(n{zr},1:-pre/res+post/res+1)=nan; |
|
100 |
+ else |
|
101 |
+% nn{zr}=nn{zr}+1; |
|
102 |
+ pst{zr}(n{zr},:)=(pst{zr}(n{zr},:)-bline)/bline*100; % 'epoch-based' normalization |
|
103 |
+ end; |
|
104 |
+ end; |
|
105 |
+ end; |
|
106 |
+ end; |
|
107 |
+ end; |
|
108 |
+ if ~strcmp(normz,'epoc') |
|
109 |
+ bline(zr)=nanmean(nanmean(pst{zr}(sstart{zr}:n{zr},-pre/res+(bstart)/res+1:-pre/res+(bend)/res+1))); |
|
110 |
+ bstd(zr)=nanmean(nanstd(pst{zr}(sstart{zr}:n{zr},-pre/res+(bstart)/res+1:-pre/res+(bend)/res+1))); |
|
111 |
+ nn{zr}=n{zr}; |
|
112 |
+ end; |
|
113 |
+ end; |
|
114 |
+ if strcmp(normz,'filz') |
|
115 |
+ for zr=1:evntrow |
|
116 |
+ pst{zr}(sstart{zr}:n{zr},:)=(pst{zr}(sstart{zr}:n{zr},:)-mean(bline))/mean(bstd); % session-based z-score normalization |
|
117 |
+ end; |
|
118 |
+ elseif strcmp(normz,'file') |
|
119 |
+ for zr=1:evntrow |
|
120 |
+ pst{zr}(sstart{zr}:n{zr},:)=(pst{zr}(sstart{zr}:n{zr},:)-mean(bline))/mean(bline)*100; % session-based normalization |
|
121 |
+ end; |
|
122 |
+ end; |
|
123 |
+ end; |
|
124 |
+end |
|
0 | 125 |
\ No newline at end of file |
... | ... |
@@ -15,6 +15,8 @@ function spm_SVMCrossVal |
15 | 15 |
set(frame,'Units','normalize'); |
16 | 16 |
|
17 | 17 |
|
18 |
+ savemenu = uimenu(frame,'Label','Save/Load'); |
|
19 |
+ |
|
18 | 20 |
model.subjectMap = SubjectRoiMapping; |
19 | 21 |
nElementRows = 24; |
20 | 22 |
optionLineHeight = 1.0/nElementRows; |
... | ... |
@@ -39,6 +41,8 @@ function spm_SVMCrossVal |
39 | 41 |
set(model.subjectSelector,'BackgroundColor','w'); |
40 | 42 |
|
41 | 43 |
model.txtSmoothed = createTextField(pSubject,[0.68*frameWidth firstRow 0.25*frameWidth controlElementHeight],'1'); |
44 |
+ model.txtMultisubject = createTextField(pSubject,[0.68*frameWidth firstRow*2 0.25*frameWidth controlElementHeight],'single'); |
|
45 |
+ set(model.txtMultisubject,'enable','off'); |
|
42 | 46 |
|
43 | 47 |
% PSTH |
44 | 48 |
firstColumn = 5.00; |
... | ... |
@@ -60,12 +64,12 @@ function spm_SVMCrossVal |
60 | 64 |
lFramsSize = createLabel(pPSTH, [firstColumn fifthRow 0.33*frameWidth controlElementHeight],'SVM Frame Size'); |
61 | 65 |
|
62 | 66 |
|
63 |
- model.txtBaselineStart = createTextField(pPSTH,[secondColumn thirdRow 0.25*frameWidth controlElementHeight],'-22.0'); |
|
64 |
- model.txtBaselineEnd = createTextField(pPSTH,[thirdColumn thirdRow 0.25*frameWidth controlElementHeight],'-20.0'); |
|
65 |
- model.txtPSTHStart = createTextField(pPSTH,[secondColumn secondRow 0.25*frameWidth controlElementHeight],'-25.0'); |
|
66 |
- model.txtPSTHEnd = createTextField(pPSTH,[thirdColumn secondRow 0.25*frameWidth controlElementHeight],' 20.0'); |
|
67 |
- model.txtFrameShiftStart = createTextField(pPSTH,[secondColumn fourthRow 0.25*frameWidth controlElementHeight],'-20.0'); |
|
68 |
- model.txtFrameShiftEnd = createTextField(pPSTH,[thirdColumn fourthRow 0.25*frameWidth controlElementHeight],' 15.0'); |
|
67 |
+ model.txtPSTHStart = createTextField(pPSTH,[secondColumn secondRow 0.25*frameWidth controlElementHeight],'-1.0'); |
|
68 |
+ model.txtPSTHEnd = createTextField(pPSTH,[thirdColumn secondRow 0.25*frameWidth controlElementHeight],' 35.0'); |
|
69 |
+ model.txtBaselineStart = createTextField(pPSTH,[secondColumn thirdRow 0.25*frameWidth controlElementHeight],'-3.0'); |
|
70 |
+ model.txtBaselineEnd = createTextField(pPSTH,[thirdColumn thirdRow 0.25*frameWidth controlElementHeight],'-1.0'); |
|
71 |
+ model.txtFrameShiftStart = createTextField(pPSTH,[secondColumn fourthRow 0.25*frameWidth controlElementHeight],'-5.0'); |
|
72 |
+ model.txtFrameShiftEnd = createTextField(pPSTH,[thirdColumn fourthRow 0.25*frameWidth controlElementHeight],' 45.0'); |
|
69 | 73 |
model.txtFrameShiftDur = createTextField(pPSTH,[secondColumn fifthRow 0.25*frameWidth controlElementHeight],' 0'); |
70 | 74 |
|
71 | 75 |
|
... | ... |
@@ -107,63 +111,58 @@ function spm_SVMCrossVal |
107 | 111 |
set(model.txtSVMopts,'HorizontalAlignment','left'); |
108 | 112 |
|
109 | 113 |
set(btnRunButton,'Callback',{@cbRunSVM,model}); % set here, because of model. |
114 |
+ uimenu(savemenu,'Label','Save','Callback',{@mcb_save,model}); |
|
115 |
+ uimenu(savemenu,'Label','Load','Callback',{@mcb_load,model}); |
|
116 |
+ |
|
110 | 117 |
set(frame,'Visible','on'); |
111 | 118 |
end |
112 | 119 |
|
113 |
-function label = createLabel(parent, pos, labelText) |
|
114 |
- label = uicontrol(parent,'Style','text','String',labelText,'Position',pos); |
|
115 |
- set(label,'HorizontalAlignment','left'); |
|
116 |
- set(label,'Units','characters'); |
|
117 |
-% set(label,'BackgroundColor','r'); |
|
118 |
-end |
|
120 |
+function mcb_save(src,event,model) |
|
121 |
+display('SAVE'); |
|
119 | 122 |
|
120 |
-function btn = createButton(parent,pos,tag,labelText,cbArgs) |
|
121 |
- btn = uicontrol(parent,'Position',pos,'String',labelText,'tag',tag); |
|
122 |
- set(btn,'Callback',{@cbParseVariable,cbArgs}); |
|
123 |
-% set(btn,'BackgroundColor','b'); |
|
124 | 123 |
end |
125 | 124 |
|
126 |
-function txt = createTextField(parent,pos,model) |
|
127 |
- txt = uicontrol(parent,'Style','edit','String',model,'Position',pos); |
|
128 |
- set(txt,'BackgroundColor','w'); |
|
129 |
-end |
|
130 |
- |
|
131 |
-function drpField = createDropDown(parent,pos,selectionModel) |
|
132 |
- drpField = uicontrol(parent,'Style','popupmenu','Position',pos); |
|
133 |
- set(drpField,'String',selectionModel.Strings); |
|
134 |
- set(drpField,'BackgroundColor','w'); |
|
125 |
+function mcb_load(src,event,model) |
|
126 |
+display('LOAD'); |
|
135 | 127 |
end |
136 | 128 |
|
137 | 129 |
function sane = isSane(model) |
130 |
+% TODO |
|
138 | 131 |
sane = 1; |
139 | 132 |
end |
140 | 133 |
|
141 |
- |
|
142 | 134 |
function cbRunSVM(src,evnt,model) |
143 |
- |
|
144 | 135 |
display('RUN'); |
145 |
- |
|
146 |
- % TODO test parameter values |
|
147 |
- |
|
148 | 136 |
if isSane(model) |
149 |
- set(0,'userdata',model); |
|
150 |
-% set(src,'Enable','off'); |
|
151 |
-% assignin('base','guiParams',model); |
|
152 | 137 |
classify(model) |
153 |
-% set(src,'Enable','on'); |
|
154 | 138 |
else |
155 |
- %todo error beep! |
|
156 | 139 |
error('spmtoolbox:SVMCrossVal:paramcheck','please verify all parameters'); |
157 | 140 |
end |
158 |
- |
|
159 | 141 |
end |
160 | 142 |
|
161 | 143 |
|
162 |
-function save(model) |
|
144 |
+function label = createLabel(parent, pos, labelText) |
|
145 |
+ label = uicontrol(parent,'Style','text','String',labelText,'Position',pos); |
|
146 |
+ set(label,'HorizontalAlignment','left'); |
|
147 |
+ set(label,'Units','characters'); |
|
148 |
+% set(label,'BackgroundColor','r'); |
|
149 |
+end |
|
150 |
+ |
|
151 |
+function btn = createButton(parent,pos,tag,labelText,cbArgs) |
|
152 |
+ btn = uicontrol(parent,'Position',pos,'String',labelText,'tag',tag); |
|
153 |
+ set(btn,'Callback',{@cbParseVariable,cbArgs}); |
|
154 |
+% set(btn,'BackgroundColor','b'); |
|
155 |
+end |
|
163 | 156 |
|
157 |
+function txt = createTextField(parent,pos,model) |
|
158 |
+ txt = uicontrol(parent,'Style','edit','String',model,'Position',pos); |
|
159 |
+ set(txt,'BackgroundColor','w'); |
|
164 | 160 |
end |
165 | 161 |
|
166 |
-function model = load() |
|
162 |
+function drpField = createDropDown(parent,pos,selectionModel) |
|
163 |
+ drpField = uicontrol(parent,'Style','popupmenu','Position',pos); |
|
164 |
+ set(drpField,'String',selectionModel.Strings); |
|
165 |
+ set(drpField,'BackgroundColor','w'); |
|
167 | 166 |
end |
168 | 167 |
|
169 | 168 |
|
170 | 169 |