git.schokokeks.org
Repositories
Help
Report an Issue
keks-overlay.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
e531ac7
Branches
Tags
master
keks-overlay.git
dev-lang
php
files
php-5.3.1-sha512.diff
add php 5.2 slot ebuild
Hanno Böck
commited
e531ac7
at 2010-07-30 00:16:43
php-5.3.1-sha512.diff
Blame
History
Raw
Index: ext/standard/crypt_sha512.c =================================================================== --- ext/standard/crypt_sha512.c (Revision 0) +++ ext/standard/crypt_sha512.c (Revision 291899) @@ -0,0 +1,831 @@ +/* SHA512-based Unix crypt implementation. + Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. */ +/* Windows VC++ port by Pierre Joye <pierre@php.net> */ + +#ifndef PHP_WIN32 +# include <endian.h> +# include "php.h" +# include "php_main.h" +#endif + +#include <errno.h> +#include <limits.h> +#ifdef PHP_WIN32 +# include "win32/php_stdint.h" +# include "win32/php_stdbool.h" +# define __alignof__ __alignof +# define alloca _alloca +#else +# if HAVE_INTTYPES_H +# include <inttypes.h> +# elif HAVE_STDINT_H +# include <stdint.h> +# endif +# include <stdbool.h> +#endif + +#include <stdio.h> +#include <stdlib.h> + +#ifdef PHP_WIN32 +# include <string.h> +#else +# include <sys/param.h> +# include <sys/types.h> +# if HAVE_STRING_H +# define __USE_GNU +# include <string.h> +# else +# include <strings.h> +# endif +#endif +#if 0 +#ifndef stpncpy +char * stpncpy(char *dst, const char *src, size_t len) +{ + size_t n = strlen(src); + if (n > len) { + n = len; + } + return strncpy(dst, src, len) + n; +} +#endif + +#ifndef mempcpy +void * mempcpy(void * dst, const void * src, size_t len) +{ + return (((char *)memcpy(dst, src, len)) + len); +} +#endif +#endif + +#ifndef MIN +# define MIN(a, b) (((a) < (b)) ? (a) : (b)) +#endif +#ifndef MAX +# define MAX(a, b) (((a) > (b)) ? (a) : (b)) +#endif + +/* Structure to save state of computation between the single steps. */ +struct sha512_ctx +{ + uint64_t H[8]; + + uint64_t total[2]; + uint64_t buflen; + char buffer[256]; /* NB: always correctly aligned for uint64_t. */ +}; + + +#if PHP_WIN32 || (__BYTE_ORDER == __LITTLE_ENDIAN) +# define SWAP(n) \ + (((n) << 56) \ + | (((n) & 0xff00) << 40) \ + | (((n) & 0xff0000) << 24) \ + | (((n) & 0xff000000) << 8) \ + | (((n) >> 8) & 0xff000000) \ + | (((n) >> 24) & 0xff0000) \ + | (((n) >> 40) & 0xff00) \ + | ((n) >> 56)) +#else +# define SWAP(n) (n) +#endif + +/* This array contains the bytes used to pad the buffer to the next + 64-byte boundary. (FIPS 180-2:5.1.2) */ +static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ }; + +/* Constants for SHA512 from FIPS 180-2:4.2.3. */ +static const uint64_t K[80] = { + UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd), + UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc), + UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019), + UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118), + UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe), + UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2), + UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1), + UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694), + UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3), + UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65), + UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483), + UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5), + UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210), + UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4), + UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725), + UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70), + UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926), + UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df), + UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8), + UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b), + UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001), + UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30), + UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910), + UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8), + UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53), + UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8), + UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb), + UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3), + UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60), + UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec), + UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9), + UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b), + UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207), + UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178), + UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6), + UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b), + UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493), + UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c), + UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a), + UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817) + }; + + +/* Process LEN bytes of BUFFER, accumulating context into CTX. + It is assumed that LEN % 128 == 0. */ +static void +sha512_process_block(const void *buffer, size_t len, struct sha512_ctx *ctx) { + const uint64_t *words = buffer; + size_t nwords = len / sizeof(uint64_t); + uint64_t a = ctx->H[0]; + uint64_t b = ctx->H[1]; + uint64_t c = ctx->H[2]; + uint64_t d = ctx->H[3]; + uint64_t e = ctx->H[4]; + uint64_t f = ctx->H[5]; + uint64_t g = ctx->H[6]; + uint64_t h = ctx->H[7]; + + /* First increment the byte count. FIPS 180-2 specifies the possible + length of the file up to 2^128 bits. Here we only compute the + number of bytes. Do a double word increment. */ + ctx->total[0] += len; + if (ctx->total[0] < len) { + ++ctx->total[1]; + } + + /* Process all bytes in the buffer with 128 bytes in each round of + the loop. */ + while (nwords > 0) { + uint64_t W[80]; + uint64_t a_save = a; + uint64_t b_save = b; + uint64_t c_save = c; + uint64_t d_save = d; + uint64_t e_save = e; + uint64_t f_save = f; + uint64_t g_save = g; + uint64_t h_save = h; + unsigned int t; + +/* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39)) +#define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41)) +#define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7)) +#define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6)) + + /* It is unfortunate that C does not provide an operator for + cyclic rotation. Hope the C compiler is smart enough. */ +#define CYCLIC(w, s) ((w >> s) | (w << (64 - s))) + + /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ + for (t = 0; t < 16; ++t) { + W[t] = SWAP (*words); + ++words; + } + + for (t = 16; t < 80; ++t) { + W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; + } + + /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ + for (t = 0; t < 80; ++t) { + uint64_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; + uint64_t T2 = S0 (a) + Maj (a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } + + /* Add the starting values of the context according to FIPS 180-2:6.3.2 + step 4. */ + a += a_save; + b += b_save; + c += c_save; + d += d_save; + e += e_save; + f += f_save; + g += g_save; + h += h_save; + + /* Prepare for the next round. */ + nwords -= 16; + } + + /* Put checksum in context given as argument. */ + ctx->H[0] = a; + ctx->H[1] = b; + ctx->H[2] = c; + ctx->H[3] = d; + ctx->H[4] = e; + ctx->H[5] = f; + ctx->H[6] = g; + ctx->H[7] = h; +} + + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.3) */ +static void sha512_init_ctx (struct sha512_ctx *ctx) { + ctx->H[0] = UINT64_C (0x6a09e667f3bcc908); + ctx->H[1] = UINT64_C (0xbb67ae8584caa73b); + ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b); + ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1); + ctx->H[4] = UINT64_C (0x510e527fade682d1); + ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f); + ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b); + ctx->H[7] = UINT64_C (0x5be0cd19137e2179); + + ctx->total[0] = ctx->total[1] = 0; + ctx->buflen = 0; +} + + +/* Process the remaining bytes in the internal buffer and the usual + prolog according to the standard and write the result to RESBUF. + + IMPORTANT: On some systems it is required that RESBUF is correctly + aligned for a 32 bits value. */ +static void * sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf) { + /* Take yet unprocessed bytes into account. */ + uint64_t bytes = ctx->buflen; + size_t pad; + unsigned int i; + + /* Now count remaining bytes. */ + ctx->total[0] += bytes; + if (ctx->total[0] < bytes) { + ++ctx->total[1]; + } + + pad = bytes >= 112 ? 128 + 112 - (size_t)bytes : 112 - (size_t)bytes; + memcpy(&ctx->buffer[bytes], fillbuf, pad); + + /* Put the 128-bit file length in *bits* at the end of the buffer. */ + *(uint64_t *) &ctx->buffer[bytes + pad + 8] = SWAP(ctx->total[0] << 3); + *(uint64_t *) &ctx->buffer[bytes + pad] = SWAP((ctx->total[1] << 3) | + (ctx->total[0] >> 61)); + + /* Process last bytes. */ + sha512_process_block(ctx->buffer, (size_t)(bytes + pad + 16), ctx); + + /* Put result from CTX in first 64 bytes following RESBUF. */ + for (i = 0; i < 8; ++i) { + ((uint64_t *) resbuf)[i] = SWAP(ctx->H[i]); + } + + return resbuf; +} + +static void +sha512_process_bytes(const void *buffer, size_t len, struct sha512_ctx *ctx) { + /* When we already have some bits in our internal buffer concatenate + both inputs first. */ + if (ctx->buflen != 0) { + size_t left_over = (size_t)ctx->buflen; + size_t add = (size_t)(256 - left_over > len ? len : 256 - left_over); + + memcpy(&ctx->buffer[left_over], buffer, add); + ctx->buflen += add; + + if (ctx->buflen > 128) { + sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx); + + ctx->buflen &= 127; + /* The regions in the following copy operation cannot overlap. */ + memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~127], + (size_t)ctx->buflen); + } + + buffer = (const char *) buffer + add; + len -= add; + } + + /* Process available complete blocks. */ + if (len >= 128) { +#if !_STRING_ARCH_unaligned +/* To check alignment gcc has an appropriate operator. Other + compilers don't. */ +# if __GNUC__ >= 2 +# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0) +# else +# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof(uint64_t) != 0) +# endif + if (UNALIGNED_P(buffer)) + while (len > 128) { + sha512_process_block(memcpy(ctx->buffer, buffer, 128), 128, ctx); + buffer = (const char *) buffer + 128; + len -= 128; + } + else +#endif + { + sha512_process_block(buffer, len & ~127, ctx); + buffer = (const char *) buffer + (len & ~127); + len &= 127; + } + } + + /* Move remaining bytes into internal buffer. */ + if (len > 0) { + size_t left_over = (size_t)ctx->buflen; + + memcpy(&ctx->buffer[left_over], buffer, len); + left_over += len; + if (left_over >= 128) { + sha512_process_block(ctx->buffer, 128, ctx); + left_over -= 128; + memcpy(ctx->buffer, &ctx->buffer[128], left_over); + } + ctx->buflen = left_over; + } +} + + +/* Define our magic string to mark salt for SHA512 "encryption" + replacement. */ +static const char sha512_salt_prefix[] = "$6$"; + +/* Prefix for optional rounds specification. */ +static const char sha512_rounds_prefix[] = "rounds="; + +/* Maximum salt string length. */ +#define SALT_LEN_MAX 16 +/* Default number of rounds if not explicitly specified. */ +#define ROUNDS_DEFAULT 5000 +/* Minimum number of rounds. */ +#define ROUNDS_MIN 1000 +/* Maximum number of rounds. */ +#define ROUNDS_MAX 999999999 + +/* Table with characters for base64 transformation. */ +static const char b64t[64] = +"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; + + +char * +php_sha512_crypt_r(const char *key, const char *salt, char *buffer, int buflen) { +#ifdef PHP_WIN32 + __declspec(align(64)) unsigned char alt_result[64]; + __declspec(align(64)) unsigned char temp_result[64]; +#else + unsigned char alt_result[64] + __attribute__ ((__aligned__ (__alignof__ (uint64_t)))); + unsigned char temp_result[64] + __attribute__ ((__aligned__ (__alignof__ (uint64_t)))); +#endif + struct sha512_ctx ctx; + struct sha512_ctx alt_ctx; + size_t salt_len; + size_t key_len; + size_t cnt; + char *cp; + char *copied_key = NULL; + char *copied_salt = NULL; + char *p_bytes; + char *s_bytes; + /* Default number of rounds. */ + size_t rounds = ROUNDS_DEFAULT; + bool rounds_custom = false; + + /* Find beginning of salt string. The prefix should normally always + be present. Just in case it is not. */ + if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0) { + /* Skip salt prefix. */ + salt += sizeof(sha512_salt_prefix) - 1; + } + + if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1) == 0) { + const char *num = salt + sizeof(sha512_rounds_prefix) - 1; + char *endp; + unsigned long int srounds = strtoul(num, &endp, 10); + + if (*endp == '$') { + salt = endp + 1; + rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); + rounds_custom = true; + } + } + + salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); + key_len = strlen(key); + + if ((key - (char *) 0) % __alignof__ (uint64_t) != 0) { + char *tmp = (char *) alloca (key_len + __alignof__ (uint64_t)); + key = copied_key = + memcpy(tmp + __alignof__(uint64_t) - (tmp - (char *) 0) % __alignof__(uint64_t), key, key_len); + } + + if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0) { + char *tmp = (char *) alloca(salt_len + __alignof__(uint64_t)); + + salt = copied_salt = memcpy(tmp + __alignof__(uint64_t) - (tmp - (char *) 0) % __alignof__(uint64_t), salt, salt_len); + } + + /* Prepare for the real work. */ + sha512_init_ctx(&ctx); + + /* Add the key string. */ + sha512_process_bytes(key, key_len, &ctx); + + /* The last part is the salt string. This must be at most 16 + characters and it ends at the first `$' character (for + compatibility with existing implementations). */ + sha512_process_bytes(salt, salt_len, &ctx); + + + /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The + final result will be added to the first context. */ + sha512_init_ctx(&alt_ctx); + + /* Add key. */ + sha512_process_bytes(key, key_len, &alt_ctx); + + /* Add salt. */ + sha512_process_bytes(salt, salt_len, &alt_ctx); + + /* Add key again. */ + sha512_process_bytes(key, key_len, &alt_ctx); + + /* Now get result of this (64 bytes) and add it to the other + context. */ + sha512_finish_ctx(&alt_ctx, alt_result); + + /* Add for any character in the key one byte of the alternate sum. */ + for (cnt = key_len; cnt > 64; cnt -= 64) { + sha512_process_bytes(alt_result, 64, &ctx); + } + sha512_process_bytes(alt_result, cnt, &ctx); + + /* Take the binary representation of the length of the key and for every + 1 add the alternate sum, for every 0 the key. */ + for (cnt = key_len; cnt > 0; cnt >>= 1) { + if ((cnt & 1) != 0) { + sha512_process_bytes(alt_result, 64, &ctx); + } else { + sha512_process_bytes(key, key_len, &ctx); + } + } + + /* Create intermediate result. */ + sha512_finish_ctx(&ctx, alt_result); + + /* Start computation of P byte sequence. */ + sha512_init_ctx(&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < key_len; ++cnt) { + sha512_process_bytes(key, key_len, &alt_ctx); + } + + /* Finish the digest. */ + sha512_finish_ctx(&alt_ctx, temp_result); + + /* Create byte sequence P. */ + cp = p_bytes = alloca(key_len); + for (cnt = key_len; cnt >= 64; cnt -= 64) { + cp = mempcpy((void *) cp, (const void *)temp_result, 64); + } + + memcpy(cp, temp_result, cnt); + + /* Start computation of S byte sequence. */ + sha512_init_ctx(&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) { + sha512_process_bytes(salt, salt_len, &alt_ctx); + } + + /* Finish the digest. */ + sha512_finish_ctx(&alt_ctx, temp_result); + + /* Create byte sequence S. */ + cp = s_bytes = alloca(salt_len); + for (cnt = salt_len; cnt >= 64; cnt -= 64) { + cp = mempcpy(cp, temp_result, 64); + } + memcpy(cp, temp_result, cnt); + + /* Repeatedly run the collected hash value through SHA512 to burn + CPU cycles. */ + for (cnt = 0; cnt < rounds; ++cnt) { + /* New context. */ + sha512_init_ctx(&ctx); + + /* Add key or last result. */ + if ((cnt & 1) != 0) { + sha512_process_bytes(p_bytes, key_len, &ctx); + } else { + sha512_process_bytes(alt_result, 64, &ctx); + } + + /* Add salt for numbers not divisible by 3. */ + if (cnt % 3 != 0) { + sha512_process_bytes(s_bytes, salt_len, &ctx); + } + + /* Add key for numbers not divisible by 7. */ + if (cnt % 7 != 0) { + sha512_process_bytes(p_bytes, key_len, &ctx); + } + + /* Add key or last result. */ + if ((cnt & 1) != 0) { + sha512_process_bytes(alt_result, 64, &ctx); + } else { + sha512_process_bytes(p_bytes, key_len, &ctx); + } + + /* Create intermediate result. */ + sha512_finish_ctx(&ctx, alt_result); + } + + /* Now we can construct the result string. It consists of three + parts. */ + cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen)); + buflen -= sizeof(sha512_salt_prefix) - 1; + + if (rounds_custom) { +#ifdef PHP_WIN32 + int n = _snprintf(cp, MAX(0, buflen), "%s%u$", sha512_rounds_prefix, rounds); +#else + int n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha512_rounds_prefix, rounds); +#endif + cp += n; + buflen -= n; + } + + cp = stpncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len)); + buflen -= (int) MIN((size_t) MAX(0, buflen), salt_len); + + if (buflen > 0) { + *cp++ = '$'; + --buflen; + } + +#define b64_from_24bit(B2, B1, B0, N) \ + do { \ + unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ + int n = (N); \ + while (n-- > 0 && buflen > 0) \ + { \ + *cp++ = b64t[w & 0x3f]; \ + --buflen; \ + w >>= 6; \ + } \ + } while (0) + + b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4); + b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4); + b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4); + b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4); + b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4); + b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4); + b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4); + b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4); + b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4); + b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4); + b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4); + b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4); + b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4); + b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4); + b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4); + b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4); + b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4); + b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4); + b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4); + b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4); + b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4); + b64_from_24bit(0, 0, alt_result[63], 2); + + if (buflen <= 0) { + errno = ERANGE; + buffer = NULL; + } else { + *cp = '\0'; /* Terminate the string. */ + } + + /* Clear the buffer for the intermediate result so that people + attaching to processes or reading core dumps cannot get any + information. We do it in this way to clear correct_words[] + inside the SHA512 implementation as well. */ + sha512_init_ctx(&ctx); + sha512_finish_ctx(&ctx, alt_result); + memset(temp_result, '\0', sizeof(temp_result)); + memset(p_bytes, '\0', key_len); + memset(s_bytes, '\0', salt_len); + memset(&ctx, '\0', sizeof(ctx)); + memset(&alt_ctx, '\0', sizeof(alt_ctx)); + if (copied_key != NULL) { + memset(copied_key, '\0', key_len); + } + if (copied_salt != NULL) { + memset(copied_salt, '\0', salt_len); + } + + return buffer; +} + + +/* This entry point is equivalent to the `crypt' function in Unix + libcs. */ +char * +php_sha512_crypt(const char *key, const char *salt) { + /* We don't want to have an arbitrary limit in the size of the + password. We can compute an upper bound for the size of the + result in advance and so we can prepare the buffer we pass to + `sha512_crypt_r'. */ + static char *buffer; + static int buflen; + int needed = (int)(sizeof(sha512_salt_prefix) - 1 + + sizeof(sha512_rounds_prefix) + 9 + 1 + + strlen(salt) + 1 + 86 + 1); + + if (buflen < needed) { + char *new_buffer = (char *) realloc(buffer, needed); + if (new_buffer == NULL) { + return NULL; + } + + buffer = new_buffer; + buflen = needed; + } + + return php_sha512_crypt_r (key, salt, buffer, buflen); +} + +#ifdef TEST +static const struct { + const char *input; + const char result[64]; +} tests[] = + { + /* Test vectors from FIPS 180-2: appendix C.1. */ + { "abc", + "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31" + "\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a" + "\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd" + "\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f" }, + /* Test vectors from FIPS 180-2: appendix C.2. */ + { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" + "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", + "\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f" + "\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18" + "\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a" + "\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09" }, + /* Test vectors from the NESSIE project. */ + { "", + "\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07" + "\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce" + "\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f" + "\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e" }, + { "a", + "\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2" + "\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53" + "\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46" + "\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75" }, + { "message digest", + "\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51" + "\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33" + "\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20" + "\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c" }, + { "abcdefghijklmnopqrstuvwxyz", + "\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81" + "\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29" + "\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59" + "\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1" }, + { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", + "\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16" + "\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35" + "\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0" + "\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45" }, + { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", + "\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93" + "\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4" + "\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab" + "\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94" }, + { "123456789012345678901234567890123456789012345678901234567890" + "12345678901234567890", + "\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95" + "\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a" + "\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1" + "\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43" } + }; +#define ntests (sizeof (tests) / sizeof (tests[0])) + + +static const struct +{ + const char *salt; + const char *input; + const char *expected; +} tests2[] = { + { "$6$saltstring", "Hello world!", + "$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu" + "esI68u4OTLiBFdcbYEdFCoEOfaS35inz1"}, + { "$6$rounds=10000$saltstringsaltstring", "Hello world!", + "$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb" + "HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v." }, + { "$6$rounds=5000$toolongsaltstring", "This is just a test", + "$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ" + "zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0" }, + { "$6$rounds=1400$anotherlongsaltstring", + "a very much longer text to encrypt. This one even stretches over more" + "than one line.", + "$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP" + "vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1" }, + { "$6$rounds=77777$short", + "we have a short salt string but not a short password", + "$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g" + "ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0" }, + { "$6$rounds=123456$asaltof16chars..", "a short string", + "$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc" + "elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1" }, + { "$6$rounds=10$roundstoolow", "the minimum number is still observed", + "$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x" + "hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX." }, +}; +#define ntests2 (sizeof (tests2) / sizeof (tests2[0])) + + +int main (void) { + struct sha512_ctx ctx; + char sum[64]; + int result = 0; + int cnt; + int i; + char buf[1000]; + static const char expected[64] = + "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63" + "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb" + "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b" + "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b"; + + for (cnt = 0; cnt < (int) ntests; ++cnt) { + sha512_init_ctx (&ctx); + sha512_process_bytes (tests[cnt].input, strlen (tests[cnt].input), &ctx); + sha512_finish_ctx (&ctx, sum); + if (memcmp (tests[cnt].result, sum, 64) != 0) { + printf ("test %d run %d failed\n", cnt, 1); + result = 1; + } + + sha512_init_ctx (&ctx); + for (i = 0; tests[cnt].input[i] != '\0'; ++i) { + sha512_process_bytes (&tests[cnt].input[i], 1, &ctx); + } + sha512_finish_ctx (&ctx, sum); + if (memcmp (tests[cnt].result, sum, 64) != 0) { + printf ("test %d run %d failed\n", cnt, 2); + result = 1; + } + } + + /* Test vector from FIPS 180-2: appendix C.3. */ + + memset (buf, 'a', sizeof (buf)); + sha512_init_ctx (&ctx); + for (i = 0; i < 1000; ++i) { + sha512_process_bytes (buf, sizeof (buf), &ctx); + } + + sha512_finish_ctx (&ctx, sum); + if (memcmp (expected, sum, 64) != 0) { + printf ("test %d failed\n", cnt); + result = 1; + } + + for (cnt = 0; cnt < ntests2; ++cnt) { + char *cp = php_sha512_crypt(tests2[cnt].input, tests2[cnt].salt); + + if (strcmp (cp, tests2[cnt].expected) != 0) { + printf ("test %d: expected \"%s\", got \"%s\"\n", + cnt, tests2[cnt].expected, cp); + result = 1; + } + } + + if (result == 0) { + puts ("all tests OK"); + } + + return result; +} +#endif Index: ext/standard/crypt_sha256.c =================================================================== --- ext/standard/crypt_sha256.c (Revision 0) +++ ext/standard/crypt_sha256.c (Revision 291899) @@ -0,0 +1,754 @@ +/* SHA256-based Unix crypt implementation. + Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. */ +/* Windows VC++ port by Pierre Joye <pierre@php.net> */ + +#ifndef PHP_WIN32 +# include <endian.h> +# include "php.h" +# include "php_main.h" +#endif + +#include <errno.h> +#include <limits.h> + +#ifdef PHP_WIN32 +# include "win32/php_stdint.h" +# include "win32/php_stdbool.h" +# define __alignof__ __alignof +# define alloca _alloca +#else +# if HAVE_INTTYPES_H +# include <inttypes.h> +# elif HAVE_STDINT_H +# include <stdint.h> +# endif +# include <stdbool.h> +#endif + +#include <stdio.h> +#include <stdlib.h> + +#ifdef PHP_WIN32 +# include <string.h> +#else +# include <sys/param.h> +# include <sys/types.h> +# if HAVE_STRING_H +//# define __USE_GNU 1 +# include <string.h> +# else +# include <strings.h> +# endif +#endif + +#ifndef HAVE_STRPNCPY +char * stpncpy(char *dst, const char *src, size_t len) +{ + size_t n = strlen(src); + if (n > len) { + n = len; + } + return strncpy(dst, src, len) + n; +} +#endif + +#ifndef HAVE_MEMPCPY +void * mempcpy(void * dst, const void * src, size_t len) +{ + return (((char *)memcpy(dst, src, len)) + len); +} +#endif + +#ifndef MIN +# define MIN(a, b) (((a) < (b)) ? (a) : (b)) +#endif +#ifndef MAX +# define MAX(a, b) (((a) > (b)) ? (a) : (b)) +#endif + +/* Structure to save state of computation between the single steps. */ +struct sha256_ctx { + uint32_t H[8]; + + uint32_t total[2]; + uint32_t buflen; + char buffer[128]; /* NB: always correctly aligned for uint32_t. */ +}; + +#if PHP_WIN32 || (__BYTE_ORDER == __LITTLE_ENDIAN) +# define SWAP(n) \ + (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) +#else +# define SWAP(n) (n) +#endif + +/* This array contains the bytes used to pad the buffer to the next + 64-byte boundary. (FIPS 180-2:5.1.1) */ +static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; + + +/* Constants for SHA256 from FIPS 180-2:4.2.2. */ +static const uint32_t K[64] = { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, + 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, + 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, + 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, + 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, + 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, + 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, + 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, + 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 +}; + + +/* Process LEN bytes of BUFFER, accumulating context into CTX. + It is assumed that LEN % 64 == 0. */ +static void sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx) { + const uint32_t *words = buffer; + size_t nwords = len / sizeof (uint32_t); + unsigned int t; + + uint32_t a = ctx->H[0]; + uint32_t b = ctx->H[1]; + uint32_t c = ctx->H[2]; + uint32_t d = ctx->H[3]; + uint32_t e = ctx->H[4]; + uint32_t f = ctx->H[5]; + uint32_t g = ctx->H[6]; + uint32_t h = ctx->H[7]; + + /* First increment the byte count. FIPS 180-2 specifies the possible + length of the file up to 2^64 bits. Here we only compute the + number of bytes. Do a double word increment. */ + ctx->total[0] += len; + if (ctx->total[0] < len) { + ++ctx->total[1]; + } + + /* Process all bytes in the buffer with 64 bytes in each round of + the loop. */ + while (nwords > 0) { + uint32_t W[64]; + uint32_t a_save = a; + uint32_t b_save = b; + uint32_t c_save = c; + uint32_t d_save = d; + uint32_t e_save = e; + uint32_t f_save = f; + uint32_t g_save = g; + uint32_t h_save = h; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22)) +#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25)) +#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3)) +#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10)) + + /* It is unfortunate that C does not provide an operator for + cyclic rotation. Hope the C compiler is smart enough. */ +#define CYCLIC(w, s) ((w >> s) | (w << (32 - s))) + + /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ + for (t = 0; t < 16; ++t) { + W[t] = SWAP (*words); + ++words; + } + for (t = 16; t < 64; ++t) + W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; + + /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ + for (t = 0; t < 64; ++t) { + uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; + uint32_t T2 = S0 (a) + Maj (a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } + + /* Add the starting values of the context according to FIPS 180-2:6.2.2 + step 4. */ + a += a_save; + b += b_save; + c += c_save; + d += d_save; + e += e_save; + f += f_save; + g += g_save; + h += h_save; + + /* Prepare for the next round. */ + nwords -= 16; + } + + /* Put checksum in context given as argument. */ + ctx->H[0] = a; + ctx->H[1] = b; + ctx->H[2] = c; + ctx->H[3] = d; + ctx->H[4] = e; + ctx->H[5] = f; + ctx->H[6] = g; + ctx->H[7] = h; +} + + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.2) */ +static void sha256_init_ctx(struct sha256_ctx *ctx) { + ctx->H[0] = 0x6a09e667; + ctx->H[1] = 0xbb67ae85; + ctx->H[2] = 0x3c6ef372; + ctx->H[3] = 0xa54ff53a; + ctx->H[4] = 0x510e527f; + ctx->H[5] = 0x9b05688c; + ctx->H[6] = 0x1f83d9ab; + ctx->H[7] = 0x5be0cd19; + + ctx->total[0] = ctx->total[1] = 0; + ctx->buflen = 0; +} + + +/* Process the remaining bytes in the internal buffer and the usual + prolog according to the standard and write the result to RESBUF. + + IMPORTANT: On some systems it is required that RESBUF is correctly + aligned for a 32 bits value. */ +static void * sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf) { + /* Take yet unprocessed bytes into account. */ + uint32_t bytes = ctx->buflen; + size_t pad; + unsigned int i; + + /* Now count remaining bytes. */ + ctx->total[0] += bytes; + if (ctx->total[0] < bytes) { + ++ctx->total[1]; + } + + pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; + memcpy(&ctx->buffer[bytes], fillbuf, pad); + + /* Put the 64-bit file length in *bits* at the end of the buffer. */ + *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3); + *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) | + (ctx->total[0] >> 29)); + + /* Process last bytes. */ + sha256_process_block(ctx->buffer, bytes + pad + 8, ctx); + + /* Put result from CTX in first 32 bytes following RESBUF. */ + for (i = 0; i < 8; ++i) { + ((uint32_t *) resbuf)[i] = SWAP(ctx->H[i]); + } + + return resbuf; +} + + +static void sha256_process_bytes(const void *buffer, size_t len, struct sha256_ctx *ctx) { + /* When we already have some bits in our internal buffer concatenate + both inputs first. */ + if (ctx->buflen != 0) { + size_t left_over = ctx->buflen; + size_t add = 128 - left_over > len ? len : 128 - left_over; + + memcpy(&ctx->buffer[left_over], buffer, add); + ctx->buflen += add; + + if (ctx->buflen > 64) { + sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx); + ctx->buflen &= 63; + /* The regions in the following copy operation cannot overlap. */ + memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], ctx->buflen); + } + + buffer = (const char *) buffer + add; + len -= add; + } + + /* Process available complete blocks. */ + if (len >= 64) { +/* To check alignment gcc has an appropriate operator. Other +compilers don't. */ +#if __GNUC__ >= 2 +# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0) +#else +# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0) +#endif + if (UNALIGNED_P (buffer)) + while (len > 64) { + sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx); + buffer = (const char *) buffer + 64; + len -= 64; + } else { + sha256_process_block(buffer, len & ~63, ctx); + buffer = (const char *) buffer + (len & ~63); + len &= 63; + } + } + + /* Move remaining bytes into internal buffer. */ + if (len > 0) { + size_t left_over = ctx->buflen; + + memcpy(&ctx->buffer[left_over], buffer, len); + left_over += len; + if (left_over >= 64) { + sha256_process_block(ctx->buffer, 64, ctx); + left_over -= 64; + memcpy(ctx->buffer, &ctx->buffer[64], left_over); + } + ctx->buflen = left_over; + } +} + + +/* Define our magic string to mark salt for SHA256 "encryption" + replacement. */ +static const char sha256_salt_prefix[] = "$5$"; + +/* Prefix for optional rounds specification. */ +static const char sha256_rounds_prefix[] = "rounds="; + +/* Maximum salt string length. */ +#define SALT_LEN_MAX 16 +/* Default number of rounds if not explicitly specified. */ +#define ROUNDS_DEFAULT 5000 +/* Minimum number of rounds. */ +#define ROUNDS_MIN 1000 +/* Maximum number of rounds. */ +#define ROUNDS_MAX 999999999 + +/* Table with characters for base64 transformation. */ +static const char b64t[64] = +"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; + +char * php_sha256_crypt_r(const char *key, const char *salt, char *buffer, int buflen) +{ +#ifdef PHP_WIN32 + __declspec(align(32)) unsigned char alt_result[32]; + __declspec(align(32)) unsigned char temp_result[32]; +#else + unsigned char alt_result[32] + __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); + unsigned char temp_result[32] + __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); +#endif + + struct sha256_ctx ctx; + struct sha256_ctx alt_ctx; + size_t salt_len; + size_t key_len; + size_t cnt; + char *cp; + char *copied_key = NULL; + char *copied_salt = NULL; + char *p_bytes; + char *s_bytes; + /* Default number of rounds. */ + size_t rounds = ROUNDS_DEFAULT; + bool rounds_custom = false; + + /* Find beginning of salt string. The prefix should normally always + be present. Just in case it is not. */ + if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) { + /* Skip salt prefix. */ + salt += sizeof(sha256_salt_prefix) - 1; + } + + if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) == 0) { + const char *num = salt + sizeof(sha256_rounds_prefix) - 1; + char *endp; + unsigned long int srounds = strtoul(num, &endp, 10); + if (*endp == '$') { + salt = endp + 1; + rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); + rounds_custom = true; + } + } + + salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); + key_len = strlen(key); + + if ((key - (char *) 0) % __alignof__ (uint32_t) != 0) { + char *tmp = (char *) alloca(key_len + __alignof__(uint32_t)); + key = copied_key = memcpy(tmp + __alignof__(uint32_t) - (tmp - (char *) 0) % __alignof__(uint32_t), key, key_len); + } + + if ((salt - (char *) 0) % __alignof__(uint32_t) != 0) { + char *tmp = (char *) alloca(salt_len + __alignof__(uint32_t)); + salt = copied_salt = + memcpy(tmp + __alignof__(uint32_t) - (tmp - (char *) 0) % __alignof__ (uint32_t), salt, salt_len); + } + + /* Prepare for the real work. */ + sha256_init_ctx(&ctx); + + /* Add the key string. */ + sha256_process_bytes(key, key_len, &ctx); + + /* The last part is the salt string. This must be at most 16 + characters and it ends at the first `$' character (for + compatibility with existing implementations). */ + sha256_process_bytes(salt, salt_len, &ctx); + + + /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The + final result will be added to the first context. */ + sha256_init_ctx(&alt_ctx); + + /* Add key. */ + sha256_process_bytes(key, key_len, &alt_ctx); + + /* Add salt. */ + sha256_process_bytes(salt, salt_len, &alt_ctx); + + /* Add key again. */ + sha256_process_bytes(key, key_len, &alt_ctx); + + /* Now get result of this (32 bytes) and add it to the other + context. */ + sha256_finish_ctx(&alt_ctx, alt_result); + + /* Add for any character in the key one byte of the alternate sum. */ + for (cnt = key_len; cnt > 32; cnt -= 32) { + sha256_process_bytes(alt_result, 32, &ctx); + } + sha256_process_bytes(alt_result, cnt, &ctx); + + /* Take the binary representation of the length of the key and for every + 1 add the alternate sum, for every 0 the key. */ + for (cnt = key_len; cnt > 0; cnt >>= 1) { + if ((cnt & 1) != 0) { + sha256_process_bytes(alt_result, 32, &ctx); + } else { + sha256_process_bytes(key, key_len, &ctx); + } + } + + /* Create intermediate result. */ + sha256_finish_ctx(&ctx, alt_result); + + /* Start computation of P byte sequence. */ + sha256_init_ctx(&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < key_len; ++cnt) { + sha256_process_bytes(key, key_len, &alt_ctx); + } + + /* Finish the digest. */ + sha256_finish_ctx(&alt_ctx, temp_result); + + /* Create byte sequence P. */ + cp = p_bytes = alloca(key_len); + for (cnt = key_len; cnt >= 32; cnt -= 32) { + cp = mempcpy((void *)cp, (const void *)temp_result, 32); + } + memcpy(cp, temp_result, cnt); + + /* Start computation of S byte sequence. */ + sha256_init_ctx(&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) { + sha256_process_bytes(salt, salt_len, &alt_ctx); + } + + /* Finish the digest. */ + sha256_finish_ctx(&alt_ctx, temp_result); + + /* Create byte sequence S. */ + cp = s_bytes = alloca(salt_len); + for (cnt = salt_len; cnt >= 32; cnt -= 32) { + cp = mempcpy(cp, temp_result, 32); + } + memcpy(cp, temp_result, cnt); + + /* Repeatedly run the collected hash value through SHA256 to burn + CPU cycles. */ + for (cnt = 0; cnt < rounds; ++cnt) { + /* New context. */ + sha256_init_ctx(&ctx); + + /* Add key or last result. */ + if ((cnt & 1) != 0) { + sha256_process_bytes(p_bytes, key_len, &ctx); + } else { + sha256_process_bytes(alt_result, 32, &ctx); + } + + /* Add salt for numbers not divisible by 3. */ + if (cnt % 3 != 0) { + sha256_process_bytes(s_bytes, salt_len, &ctx); + } + + /* Add key for numbers not divisible by 7. */ + if (cnt % 7 != 0) { + sha256_process_bytes(p_bytes, key_len, &ctx); + } + + /* Add key or last result. */ + if ((cnt & 1) != 0) { + sha256_process_bytes(alt_result, 32, &ctx); + } else { + sha256_process_bytes(p_bytes, key_len, &ctx); + } + + /* Create intermediate result. */ + sha256_finish_ctx(&ctx, alt_result); + } + + /* Now we can construct the result string. It consists of three + parts. */ + cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen)); + buflen -= sizeof(sha256_salt_prefix) - 1; + + if (rounds_custom) { +#ifdef PHP_WIN32 + int n = _snprintf(cp, MAX(0, buflen), "%s%u$", sha256_rounds_prefix, rounds); +#else + int n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha256_rounds_prefix, rounds); +#endif + cp += n; + buflen -= n; + } + + cp = stpncpy(cp, salt, MIN ((size_t) MAX (0, buflen), salt_len)); + buflen -= MIN((size_t) MAX (0, buflen), salt_len); + + if (buflen > 0) { + *cp++ = '$'; + --buflen; + } + +#define b64_from_24bit(B2, B1, B0, N) \ + do { \ + unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ + int n = (N); \ + while (n-- > 0 && buflen > 0) \ + { \ + *cp++ = b64t[w & 0x3f]; \ + --buflen; \ + w >>= 6; \ + } \ + } while (0) + + b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4); + b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4); + b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4); + b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4); + b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4); + b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4); + b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4); + b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4); + b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4); + b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4); + b64_from_24bit(0, alt_result[31], alt_result[30], 3); + if (buflen <= 0) { + errno = ERANGE; + buffer = NULL; + } else + *cp = '\0'; /* Terminate the string. */ + + /* Clear the buffer for the intermediate result so that people + attaching to processes or reading core dumps cannot get any + information. We do it in this way to clear correct_words[] + inside the SHA256 implementation as well. */ + sha256_init_ctx(&ctx); + sha256_finish_ctx(&ctx, alt_result); + memset(temp_result, '\0', sizeof(temp_result)); + memset(p_bytes, '\0', key_len); + memset(s_bytes, '\0', salt_len); + memset(&ctx, '\0', sizeof(ctx)); + memset(&alt_ctx, '\0', sizeof(alt_ctx)); + + if (copied_key != NULL) { + memset(copied_key, '\0', key_len); + + } + if (copied_salt != NULL) { + memset(copied_salt, '\0', salt_len); + } + + return buffer; +} + + +/* This entry point is equivalent to the `crypt' function in Unix + libcs. */ +char * php_sha256_crypt(const char *key, const char *salt) +{ + /* We don't want to have an arbitrary limit in the size of the + password. We can compute an upper bound for the size of the + result in advance and so we can prepare the buffer we pass to + `sha256_crypt_r'. */ + static char *buffer; + static int buflen; + int needed = (sizeof(sha256_salt_prefix) - 1 + + sizeof(sha256_rounds_prefix) + 9 + 1 + + strlen(salt) + 1 + 43 + 1); + + if (buflen < needed) { + char *new_buffer = (char *) realloc(buffer, needed); + if (new_buffer == NULL) { + return NULL; + } + + buffer = new_buffer; + buflen = needed; + } + + return php_sha256_crypt_r(key, salt, buffer, buflen); +} + + +#ifdef TEST +static const struct +{ + const char *input; + const char result[32]; +} tests[] = + { + /* Test vectors from FIPS 180-2: appendix B.1. */ + { "abc", + "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" + "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" }, + /* Test vectors from FIPS 180-2: appendix B.2. */ + { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", + "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" + "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, + /* Test vectors from the NESSIE project. */ + { "", + "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24" + "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55" }, + { "a", + "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d" + "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb" }, + { "message digest", + "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad" + "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50" }, + { "abcdefghijklmnopqrstuvwxyz", + "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52" + "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73" }, + { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", + "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" + "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, + { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", + "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80" + "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0" }, + { "123456789012345678901234567890123456789012345678901234567890" + "12345678901234567890", + "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e" + "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e" } + }; +#define ntests (sizeof (tests) / sizeof (tests[0])) + + +static const struct +{ + const char *salt; + const char *input; + const char *expected; +} tests2[] = +{ + { "$5$saltstring", "Hello world!", + "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" }, + { "$5$rounds=10000$saltstringsaltstring", "Hello world!", + "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2." + "opqey6IcA" }, + { "$5$rounds=5000$toolongsaltstring", "This is just a test", + "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8" + "mGRcvxa5" }, + { "$5$rounds=1400$anotherlongsaltstring", + "a very much longer text to encrypt. This one even stretches over more" + "than one line.", + "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12" + "oP84Bnq1" }, + { "$5$rounds=77777$short", + "we have a short salt string but not a short password", + "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" }, + { "$5$rounds=123456$asaltof16chars..", "a short string", + "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/" + "cZKmF/wJvD" }, + { "$5$rounds=10$roundstoolow", "the minimum number is still observed", + "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97" + "2bIC" }, +}; +#define ntests2 (sizeof (tests2) / sizeof (tests2[0])) + + +int main(void) { + struct sha256_ctx ctx; + char sum[32]; + int result = 0; + int cnt, i; + char buf[1000]; + static const char expected[32] = + "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" + "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0"; + + for (cnt = 0; cnt < (int) ntests; ++cnt) { + sha256_init_ctx(&ctx); + sha256_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx); + sha256_finish_ctx(&ctx, sum); + if (memcmp(tests[cnt].result, sum, 32) != 0) { + printf("test %d run %d failed\n", cnt, 1); + result = 1; + } + + sha256_init_ctx(&ctx); + for (i = 0; tests[cnt].input[i] != '\0'; ++i) { + sha256_process_bytes(&tests[cnt].input[i], 1, &ctx); + } + sha256_finish_ctx(&ctx, sum); + if (memcmp(tests[cnt].result, sum, 32) != 0) { + printf("test %d run %d failed\n", cnt, 2); + result = 1; + } + } + + /* Test vector from FIPS 180-2: appendix B.3. */ + + memset(buf, 'a', sizeof(buf)); + sha256_init_ctx(&ctx); + for (i = 0; i < 1000; ++i) { + sha256_process_bytes (buf, sizeof (buf), &ctx); + } + + sha256_finish_ctx(&ctx, sum); + + if (memcmp(expected, sum, 32) != 0) { + printf("test %d failed\n", cnt); + result = 1; + } + + for (cnt = 0; cnt < ntests2; ++cnt) { + char *cp = php_sha256_crypt(tests2[cnt].input, tests2[cnt].salt); + if (strcmp(cp, tests2[cnt].expected) != 0) { + printf("test %d: expected \"%s\", got \"%s\"\n", cnt, tests2[cnt].expected, cp); + result = 1; + } + } + + if (result == 0) + puts("all tests OK"); + + return result; +} +#endif Index: ext/standard/config.w32 =================================================================== --- ext/standard/config.w32 (Revision 291898) +++ ext/standard/config.w32 (Revision 291899) @@ -9,8 +9,8 @@ CHECK_HEADER_ADD_INCLUDE("timelib_config.h", "CFLAGS_STANDARD", "ext/date/lib"); EXTENSION("standard", "array.c base64.c basic_functions.c browscap.c \ - crc32.c crypt.c \ - crypt_freesec.c crypt_blowfish.c php_crypt_r.c \ + crc32.c crypt.c crypt_freesec.c crypt_blowfish.c crypt_sha256.c \ + crypt_sha512.c php_crypt_r.c \ cyr_convert.c datetime.c dir.c dl.c dns.c dns_win32.c exec.c \ file.c filestat.c formatted_print.c fsock.c head.c html.c image.c \ info.c iptc.c lcg.c link_win32.c mail.c math.c md5.c metaphone.c microtime.c \ Index: ext/standard/php_crypt_r.h =================================================================== --- ext/standard/php_crypt_r.h (Revision 291898) +++ ext/standard/php_crypt_r.h (Revision 291899) @@ -49,6 +49,8 @@ extern char * php_md5_crypt_r(const char *pw, const char *salt, char *out); extern char * php_crypt_blowfish_rn(__CONST char *key, __CONST char *setting, char *output, int size); +extern char * php_sha512_crypt_r (const char *key, const char *salt, char *buffer, int buflen); +extern char * php_sha256_crypt_r (const char *key, const char *salt, char *buffer, int buflen); #ifdef __cplusplus } Index: ext/standard/crypt.c =================================================================== --- ext/standard/crypt.c (Revision 291898) +++ ext/standard/crypt.c (Revision 291899) @@ -82,6 +82,12 @@ #define PHP_MAX_SALT_LEN 60 #endif +#if PHP_SHA512_CRYPT +#undef PHP_MAX_SALT_LEN +#define PHP_MAX_SALT_LEN 123 +#endif + + /* If the configure-time checks fail, we provide DES. * XXX: This is a hack. Fix the real problem! */ @@ -163,6 +169,7 @@ php_to64(&salt[0], PHP_CRYPT_RAND, 2); salt[2] = '\0'; #endif + salt_in_len = strlen(salt); } /* Windows (win32/crypt) has a stripped down version of libxcrypt and @@ -175,7 +182,36 @@ char output[MD5_HASH_MAX_LEN]; RETURN_STRING(php_md5_crypt_r(str, salt, output), 1); - } else if ( + } else if (salt[0]=='$' && salt[1]=='6' && salt[2]=='$') { + const char sha512_salt_prefix[] = "$6$"; + const char sha512_rounds_prefix[] = "rounds="; + char *output; + int needed = (sizeof(sha512_salt_prefix) - 1 + + sizeof(sha512_rounds_prefix) + 9 + 1 + + strlen(salt) + 1 + 43 + 1); + output = emalloc(needed * sizeof(char *)); + salt[salt_in_len] = '\0'; + + php_sha512_crypt_r(str, salt, output, needed); + + RETVAL_STRING(output, 1); + memset(output, 0, PHP_MAX_SALT_LEN + 1); + efree(output); + } else if (salt[0]=='$' && salt[1]=='5' && salt[2]=='$') { + const char sha256_salt_prefix[] = "$5$"; + const char sha256_rounds_prefix[] = "rounds="; + char *output; + int needed = (sizeof(sha256_salt_prefix) - 1 + + sizeof(sha256_rounds_prefix) + 9 + 1 + + strlen(salt) + 1 + 43 + 1); + output = emalloc(needed * sizeof(char *)); + salt[salt_in_len] = '\0'; + php_sha256_crypt_r(str, salt, output, needed); + + RETVAL_STRING(output, 1); + memset(output, 0, PHP_MAX_SALT_LEN + 1); + efree(output); + } else if ( salt[0] == '$' && salt[1] == '2' && salt[2] == 'a' && Index: ext/standard/config.m4 =================================================================== --- ext/standard/config.m4 (Revision 291898) +++ ext/standard/config.m4 (Revision 291899) @@ -172,6 +172,65 @@ ac_cv_crypt_blowfish=no ])]) +AC_CACHE_CHECK(for SHA512 crypt, ac_cv_crypt_SHA512,[ +AC_TRY_RUN([ +#if HAVE_UNISTD_H +#include <unistd.h> +#endif + +#if HAVE_CRYPT_H +#include <crypt.h> +#endif + +main() { +#if HAVE_CRYPT + char salt[30], answer[80]; + + salt[0]='$'; salt[1]='6'; salt[2]='$'; salt[3]='$'; salt[4]='b'; salt[5]='a'; salt[6]='r'; salt[7]='\0'; + strcpy(answer, salt); + strcpy(&answer[29],"$6$$QMXjqd7rHQZPQ1yHsXkQqC1FBzDiVfTHXL.LaeDAeVV.IzMaV9VU4MQ8kPuZa2SOP1A0RPm772EaFYjpEJtdu."); + exit (strcmp((char *)crypt("foo",salt),answer)); +#else + exit(0); +#endif +}],[ + ac_cv_crypt_SHA512=yes +],[ + ac_cv_crypt_SHA512=no +],[ + ac_cv_crypt_SHA512=no +])]) + +AC_CACHE_CHECK(for SHA256 crypt, ac_cv_crypt_SHA256,[ +AC_TRY_RUN([ +#if HAVE_UNISTD_H +#include <unistd.h> +#endif + +#if HAVE_CRYPT_H +#include <crypt.h> +#endif + +main() { +#if HAVE_CRYPT + char salt[30], answer[80]; + salt[0]='$'; salt[1]='5'; salt[2]='$'; salt[3]='$'; salt[4]='s'; salt[5]='a'; salt[6]='l'; salt[7]='t'; salt[8]='s'; salt[9]='t'; salt[10]='r'; salt[11]='i'; salt[12]='n'; salt[13]='g'; salt[14]='\0'; + strcat(salt,""); + strcpy(answer, salt); + strcpy(&answer[29], "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"); + exit (strcmp((char *)crypt("foo",salt),answer)); +#else + exit(0); +#endif +}],[ + ac_cv_crypt_SHA256=yes +],[ + ac_cv_crypt_SHA256=no +],[ + ac_cv_crypt_SHA256=no +])]) + + dnl dnl If one of them is missing, use our own implementation, portable code is then possible dnl @@ -181,8 +240,10 @@ AC_DEFINE_UNQUOTED(PHP_BLOWFISH_CRYPT, 1, [Whether the system supports BlowFish salt]) AC_DEFINE_UNQUOTED(PHP_EXT_DES_CRYPT, 1, [Whether the system supports extended DES salt]) AC_DEFINE_UNQUOTED(PHP_MD5_CRYPT, 1, [Whether the system supports extended DES salt]) + AC_DEFINE_UNQUOTED(PHP_SHA512_CRYPT, 1, [Whether the system supports SHA512 salt]) + AC_DEFINE_UNQUOTED(PHP_SHA256_CRYPT, 1, [Whether the system supports SHA256 salt]) - PHP_ADD_SOURCES(PHP_EXT_DIR(standard), crypt_freesec.c crypt_blowfish.c php_crypt_r.c) + PHP_ADD_SOURCES(PHP_EXT_DIR(standard), crypt_freesec.c crypt_blowfish.c crypt_sha512.c crypt_sha256.c php_crypt_r.c) else if test "$ac_cv_crypt_des" = "yes"; then ac_result=1 @@ -211,13 +272,31 @@ fi AC_DEFINE_UNQUOTED(PHP_EXT_DES_CRYPT, $ac_result, [Whether the system supports extended DES salt]) + if test "$ac_cv_crypt_sha512" = "yes"; then + ac_result=1 + ac_crypt_sha512=1 + else + ac_result=0 + ac_crypt_sha512=0 + fi + AC_DEFINE_UNQUOTED(PHP_EXT_SHA512_CRYPT, $ac_result, [Whether the system supports SHA512 salt]) + + if test "$ac_cv_crypt_sha256" = "yes"; then + ac_result=1 + ac_crypt_sha256=1 + else + ac_result=0 + ac_crypt_sha256=0 + fi + AC_DEFINE_UNQUOTED(PHP_EXT_SHA256_CRYPT, $ac_result, [Whether the system supports SHA256 salt]) + AC_DEFINE_UNQUOTED(PHP_USE_PHP_CRYPT_R, 0, [Whether PHP has to use its own crypt_r for blowfish, des and ext des]) fi dnl dnl Check for available functions dnl -AC_CHECK_FUNCS(getcwd getwd asinh acosh atanh log1p hypot glob strfmon nice fpclass isinf isnan) +AC_CHECK_FUNCS(getcwd getwd asinh acosh atanh log1p hypot glob strfmon nice fpclass isinf isnan mempcpy strpncpy) AC_FUNC_FNMATCH divert(5)dnl