Hanno Böck commited on 2009-12-22 17:31:42
Zeige 3 geänderte Dateien mit 1805 Einfügungen und 1 Löschungen.
... | ... |
@@ -3,8 +3,9 @@ AUX 70_mod_php5.conf-apache2 490 RMD160 745bdb5db622577f473703d5ee8dc7f3c66f8f0c |
3 | 3 |
AUX 70_mod_php5.conf-apache2-r1 374 RMD160 ca06cdc9d1a3dc4129a60c938ee3a1b542497fbb SHA1 4733066b6324c5870e716485484c44c7c26a9ff1 SHA256 815c1ca23c9afe8479568ceaac4057eb91ea5444fbd863866b29adb4eea2c82b |
4 | 4 |
AUX 70_mod_php5_concurr.conf-apache2 414 RMD160 1783b6c830119f021c3fb6cb35a631f43c4fa70c SHA1 09f9076f35bc84994fc8c687b4befc0400475f1a SHA256 ccc3bc073eafc83f98049679a411801e80f84620bd51c37c36de2b9ee9492aa2 |
5 | 5 |
AUX 70_mod_php5_concurr.conf-apache2-r1 376 RMD160 4f7de5c0784b6191450b5c1a7de7ad941620e199 SHA1 c42a23bd7a1d3e8c7e0ac906f50f180116349f76 SHA256 c05f499d9c8927391c586b94716a9f59d63767165552ea527ec7ff63c36eaa40 |
6 |
+AUX php-5.3.1-sha512.diff 58046 RMD160 1479068ed76c041427cdd85f18911b76f5d9bf02 SHA1 6745a2ea314554ddf3550e9ebaa192bc2ed04c8a SHA256 f152e27055e26817448f60b88d8d0738cc3def6d6f10c2d7fbbd84e5a096a344 |
|
6 | 7 |
AUX php5-ldvs 22 RMD160 5846dab2745b68a88175dd4e72d0b8cf4756dd46 SHA1 592398c92575adb14ec972847ce2aca28a7b9c2c SHA256 b79d0e52b1b3b4543b31ad45525ae1c2814a27ea8e676772ab10bf6fb12dfe79 |
7 | 8 |
DIST php-5.3.1.tar.bz2 10457046 RMD160 01183a9f752ce5982a7b91dcd43721fd1b9cd88b SHA1 be08ca9337a4962cd4acf8709cd695e1e31c1149 SHA256 9803ce0d6eb2ae072f0149158f5921135b47b633ef5632b4688b30a23be20dba |
8 | 9 |
DIST php-patchset-5.3.1-r0.tar.bz2 7301 RMD160 2582efa0b514d9c744a403b84b9ea185f1d8fd6e SHA1 9177c25ae67c301fbe038ae1cc7d55a6a16bb06f SHA256 2dbd8743d309fffda3e2896256d26631d2522eab3ba759c81192d8cc5950bb1f |
9 | 10 |
DIST suhosin-patch-5.3.1RC1-0.9.8.patch.gz 38250 RMD160 cfb60da9b4142b0d3fd0f7e193fe2419ba9a5d31 SHA1 d3e8f83f81311a5f382b545cbd745dcedd5f3c93 SHA256 46a3aff061b4d6c7f3721aa65824177c36821631247a502bc77e120559a37721 |
10 |
-EBUILD php-5.3.1.ebuild 16776 RMD160 4f27ca6d444cde333fea23ebc929b182c07c4644 SHA1 6ecf35cb6411ce09fb29df54721ac6c8df3cf3f4 SHA256 000b8f2c56aaf04ea5bba008eee82ad105c342f4ee8d276c7e9220d3e5d5fc7c |
|
11 |
+EBUILD php-5.3.1.ebuild 16816 RMD160 932192368c8d50c6b9b0f0fa0fdc72c3958c7237 SHA1 a1c7de3f071982526bcd224b907887b5ff011e63 SHA256 20247583d9640161710683100a0b9fe4f3ab49eaff7d923259e519ad75f11c85 |
... | ... |
@@ -0,0 +1,1801 @@ |
1 |
+Index: ext/standard/crypt_sha512.c |
|
2 |
+=================================================================== |
|
3 |
+--- ext/standard/crypt_sha512.c (Revision 0) |
|
4 |
++++ ext/standard/crypt_sha512.c (Revision 291899) |
|
5 |
+@@ -0,0 +1,831 @@ |
|
6 |
++/* SHA512-based Unix crypt implementation. |
|
7 |
++ Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. */ |
|
8 |
++/* Windows VC++ port by Pierre Joye <pierre@php.net> */ |
|
9 |
++ |
|
10 |
++#ifndef PHP_WIN32 |
|
11 |
++# include <endian.h> |
|
12 |
++# include "php.h" |
|
13 |
++# include "php_main.h" |
|
14 |
++#endif |
|
15 |
++ |
|
16 |
++#include <errno.h> |
|
17 |
++#include <limits.h> |
|
18 |
++#ifdef PHP_WIN32 |
|
19 |
++# include "win32/php_stdint.h" |
|
20 |
++# include "win32/php_stdbool.h" |
|
21 |
++# define __alignof__ __alignof |
|
22 |
++# define alloca _alloca |
|
23 |
++#else |
|
24 |
++# if HAVE_INTTYPES_H |
|
25 |
++# include <inttypes.h> |
|
26 |
++# elif HAVE_STDINT_H |
|
27 |
++# include <stdint.h> |
|
28 |
++# endif |
|
29 |
++# include <stdbool.h> |
|
30 |
++#endif |
|
31 |
++ |
|
32 |
++#include <stdio.h> |
|
33 |
++#include <stdlib.h> |
|
34 |
++ |
|
35 |
++#ifdef PHP_WIN32 |
|
36 |
++# include <string.h> |
|
37 |
++#else |
|
38 |
++# include <sys/param.h> |
|
39 |
++# include <sys/types.h> |
|
40 |
++# if HAVE_STRING_H |
|
41 |
++# define __USE_GNU |
|
42 |
++# include <string.h> |
|
43 |
++# else |
|
44 |
++# include <strings.h> |
|
45 |
++# endif |
|
46 |
++#endif |
|
47 |
++#if 0 |
|
48 |
++#ifndef stpncpy |
|
49 |
++char * stpncpy(char *dst, const char *src, size_t len) |
|
50 |
++{ |
|
51 |
++ size_t n = strlen(src); |
|
52 |
++ if (n > len) { |
|
53 |
++ n = len; |
|
54 |
++ } |
|
55 |
++ return strncpy(dst, src, len) + n; |
|
56 |
++} |
|
57 |
++#endif |
|
58 |
++ |
|
59 |
++#ifndef mempcpy |
|
60 |
++void * mempcpy(void * dst, const void * src, size_t len) |
|
61 |
++{ |
|
62 |
++ return (((char *)memcpy(dst, src, len)) + len); |
|
63 |
++} |
|
64 |
++#endif |
|
65 |
++#endif |
|
66 |
++ |
|
67 |
++#ifndef MIN |
|
68 |
++# define MIN(a, b) (((a) < (b)) ? (a) : (b)) |
|
69 |
++#endif |
|
70 |
++#ifndef MAX |
|
71 |
++# define MAX(a, b) (((a) > (b)) ? (a) : (b)) |
|
72 |
++#endif |
|
73 |
++ |
|
74 |
++/* Structure to save state of computation between the single steps. */ |
|
75 |
++struct sha512_ctx |
|
76 |
++{ |
|
77 |
++ uint64_t H[8]; |
|
78 |
++ |
|
79 |
++ uint64_t total[2]; |
|
80 |
++ uint64_t buflen; |
|
81 |
++ char buffer[256]; /* NB: always correctly aligned for uint64_t. */ |
|
82 |
++}; |
|
83 |
++ |
|
84 |
++ |
|
85 |
++#if PHP_WIN32 || (__BYTE_ORDER == __LITTLE_ENDIAN) |
|
86 |
++# define SWAP(n) \ |
|
87 |
++ (((n) << 56) \ |
|
88 |
++ | (((n) & 0xff00) << 40) \ |
|
89 |
++ | (((n) & 0xff0000) << 24) \ |
|
90 |
++ | (((n) & 0xff000000) << 8) \ |
|
91 |
++ | (((n) >> 8) & 0xff000000) \ |
|
92 |
++ | (((n) >> 24) & 0xff0000) \ |
|
93 |
++ | (((n) >> 40) & 0xff00) \ |
|
94 |
++ | ((n) >> 56)) |
|
95 |
++#else |
|
96 |
++# define SWAP(n) (n) |
|
97 |
++#endif |
|
98 |
++ |
|
99 |
++/* This array contains the bytes used to pad the buffer to the next |
|
100 |
++ 64-byte boundary. (FIPS 180-2:5.1.2) */ |
|
101 |
++static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ }; |
|
102 |
++ |
|
103 |
++/* Constants for SHA512 from FIPS 180-2:4.2.3. */ |
|
104 |
++static const uint64_t K[80] = { |
|
105 |
++ UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd), |
|
106 |
++ UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc), |
|
107 |
++ UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019), |
|
108 |
++ UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118), |
|
109 |
++ UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe), |
|
110 |
++ UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2), |
|
111 |
++ UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1), |
|
112 |
++ UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694), |
|
113 |
++ UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3), |
|
114 |
++ UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65), |
|
115 |
++ UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483), |
|
116 |
++ UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5), |
|
117 |
++ UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210), |
|
118 |
++ UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4), |
|
119 |
++ UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725), |
|
120 |
++ UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70), |
|
121 |
++ UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926), |
|
122 |
++ UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df), |
|
123 |
++ UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8), |
|
124 |
++ UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b), |
|
125 |
++ UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001), |
|
126 |
++ UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30), |
|
127 |
++ UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910), |
|
128 |
++ UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8), |
|
129 |
++ UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53), |
|
130 |
++ UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8), |
|
131 |
++ UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb), |
|
132 |
++ UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3), |
|
133 |
++ UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60), |
|
134 |
++ UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec), |
|
135 |
++ UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9), |
|
136 |
++ UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b), |
|
137 |
++ UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207), |
|
138 |
++ UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178), |
|
139 |
++ UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6), |
|
140 |
++ UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b), |
|
141 |
++ UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493), |
|
142 |
++ UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c), |
|
143 |
++ UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a), |
|
144 |
++ UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817) |
|
145 |
++ }; |
|
146 |
++ |
|
147 |
++ |
|
148 |
++/* Process LEN bytes of BUFFER, accumulating context into CTX. |
|
149 |
++ It is assumed that LEN % 128 == 0. */ |
|
150 |
++static void |
|
151 |
++sha512_process_block(const void *buffer, size_t len, struct sha512_ctx *ctx) { |
|
152 |
++ const uint64_t *words = buffer; |
|
153 |
++ size_t nwords = len / sizeof(uint64_t); |
|
154 |
++ uint64_t a = ctx->H[0]; |
|
155 |
++ uint64_t b = ctx->H[1]; |
|
156 |
++ uint64_t c = ctx->H[2]; |
|
157 |
++ uint64_t d = ctx->H[3]; |
|
158 |
++ uint64_t e = ctx->H[4]; |
|
159 |
++ uint64_t f = ctx->H[5]; |
|
160 |
++ uint64_t g = ctx->H[6]; |
|
161 |
++ uint64_t h = ctx->H[7]; |
|
162 |
++ |
|
163 |
++ /* First increment the byte count. FIPS 180-2 specifies the possible |
|
164 |
++ length of the file up to 2^128 bits. Here we only compute the |
|
165 |
++ number of bytes. Do a double word increment. */ |
|
166 |
++ ctx->total[0] += len; |
|
167 |
++ if (ctx->total[0] < len) { |
|
168 |
++ ++ctx->total[1]; |
|
169 |
++ } |
|
170 |
++ |
|
171 |
++ /* Process all bytes in the buffer with 128 bytes in each round of |
|
172 |
++ the loop. */ |
|
173 |
++ while (nwords > 0) { |
|
174 |
++ uint64_t W[80]; |
|
175 |
++ uint64_t a_save = a; |
|
176 |
++ uint64_t b_save = b; |
|
177 |
++ uint64_t c_save = c; |
|
178 |
++ uint64_t d_save = d; |
|
179 |
++ uint64_t e_save = e; |
|
180 |
++ uint64_t f_save = f; |
|
181 |
++ uint64_t g_save = g; |
|
182 |
++ uint64_t h_save = h; |
|
183 |
++ unsigned int t; |
|
184 |
++ |
|
185 |
++/* Operators defined in FIPS 180-2:4.1.2. */ |
|
186 |
++#define Ch(x, y, z) ((x & y) ^ (~x & z)) |
|
187 |
++#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
|
188 |
++#define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39)) |
|
189 |
++#define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41)) |
|
190 |
++#define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7)) |
|
191 |
++#define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6)) |
|
192 |
++ |
|
193 |
++ /* It is unfortunate that C does not provide an operator for |
|
194 |
++ cyclic rotation. Hope the C compiler is smart enough. */ |
|
195 |
++#define CYCLIC(w, s) ((w >> s) | (w << (64 - s))) |
|
196 |
++ |
|
197 |
++ /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ |
|
198 |
++ for (t = 0; t < 16; ++t) { |
|
199 |
++ W[t] = SWAP (*words); |
|
200 |
++ ++words; |
|
201 |
++ } |
|
202 |
++ |
|
203 |
++ for (t = 16; t < 80; ++t) { |
|
204 |
++ W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; |
|
205 |
++ } |
|
206 |
++ |
|
207 |
++ /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ |
|
208 |
++ for (t = 0; t < 80; ++t) { |
|
209 |
++ uint64_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; |
|
210 |
++ uint64_t T2 = S0 (a) + Maj (a, b, c); |
|
211 |
++ h = g; |
|
212 |
++ g = f; |
|
213 |
++ f = e; |
|
214 |
++ e = d + T1; |
|
215 |
++ d = c; |
|
216 |
++ c = b; |
|
217 |
++ b = a; |
|
218 |
++ a = T1 + T2; |
|
219 |
++ } |
|
220 |
++ |
|
221 |
++ /* Add the starting values of the context according to FIPS 180-2:6.3.2 |
|
222 |
++ step 4. */ |
|
223 |
++ a += a_save; |
|
224 |
++ b += b_save; |
|
225 |
++ c += c_save; |
|
226 |
++ d += d_save; |
|
227 |
++ e += e_save; |
|
228 |
++ f += f_save; |
|
229 |
++ g += g_save; |
|
230 |
++ h += h_save; |
|
231 |
++ |
|
232 |
++ /* Prepare for the next round. */ |
|
233 |
++ nwords -= 16; |
|
234 |
++ } |
|
235 |
++ |
|
236 |
++ /* Put checksum in context given as argument. */ |
|
237 |
++ ctx->H[0] = a; |
|
238 |
++ ctx->H[1] = b; |
|
239 |
++ ctx->H[2] = c; |
|
240 |
++ ctx->H[3] = d; |
|
241 |
++ ctx->H[4] = e; |
|
242 |
++ ctx->H[5] = f; |
|
243 |
++ ctx->H[6] = g; |
|
244 |
++ ctx->H[7] = h; |
|
245 |
++} |
|
246 |
++ |
|
247 |
++ |
|
248 |
++/* Initialize structure containing state of computation. |
|
249 |
++ (FIPS 180-2:5.3.3) */ |
|
250 |
++static void sha512_init_ctx (struct sha512_ctx *ctx) { |
|
251 |
++ ctx->H[0] = UINT64_C (0x6a09e667f3bcc908); |
|
252 |
++ ctx->H[1] = UINT64_C (0xbb67ae8584caa73b); |
|
253 |
++ ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b); |
|
254 |
++ ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1); |
|
255 |
++ ctx->H[4] = UINT64_C (0x510e527fade682d1); |
|
256 |
++ ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f); |
|
257 |
++ ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b); |
|
258 |
++ ctx->H[7] = UINT64_C (0x5be0cd19137e2179); |
|
259 |
++ |
|
260 |
++ ctx->total[0] = ctx->total[1] = 0; |
|
261 |
++ ctx->buflen = 0; |
|
262 |
++} |
|
263 |
++ |
|
264 |
++ |
|
265 |
++/* Process the remaining bytes in the internal buffer and the usual |
|
266 |
++ prolog according to the standard and write the result to RESBUF. |
|
267 |
++ |
|
268 |
++ IMPORTANT: On some systems it is required that RESBUF is correctly |
|
269 |
++ aligned for a 32 bits value. */ |
|
270 |
++static void * sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf) { |
|
271 |
++ /* Take yet unprocessed bytes into account. */ |
|
272 |
++ uint64_t bytes = ctx->buflen; |
|
273 |
++ size_t pad; |
|
274 |
++ unsigned int i; |
|
275 |
++ |
|
276 |
++ /* Now count remaining bytes. */ |
|
277 |
++ ctx->total[0] += bytes; |
|
278 |
++ if (ctx->total[0] < bytes) { |
|
279 |
++ ++ctx->total[1]; |
|
280 |
++ } |
|
281 |
++ |
|
282 |
++ pad = bytes >= 112 ? 128 + 112 - (size_t)bytes : 112 - (size_t)bytes; |
|
283 |
++ memcpy(&ctx->buffer[bytes], fillbuf, pad); |
|
284 |
++ |
|
285 |
++ /* Put the 128-bit file length in *bits* at the end of the buffer. */ |
|
286 |
++ *(uint64_t *) &ctx->buffer[bytes + pad + 8] = SWAP(ctx->total[0] << 3); |
|
287 |
++ *(uint64_t *) &ctx->buffer[bytes + pad] = SWAP((ctx->total[1] << 3) | |
|
288 |
++ (ctx->total[0] >> 61)); |
|
289 |
++ |
|
290 |
++ /* Process last bytes. */ |
|
291 |
++ sha512_process_block(ctx->buffer, (size_t)(bytes + pad + 16), ctx); |
|
292 |
++ |
|
293 |
++ /* Put result from CTX in first 64 bytes following RESBUF. */ |
|
294 |
++ for (i = 0; i < 8; ++i) { |
|
295 |
++ ((uint64_t *) resbuf)[i] = SWAP(ctx->H[i]); |
|
296 |
++ } |
|
297 |
++ |
|
298 |
++ return resbuf; |
|
299 |
++} |
|
300 |
++ |
|
301 |
++static void |
|
302 |
++sha512_process_bytes(const void *buffer, size_t len, struct sha512_ctx *ctx) { |
|
303 |
++ /* When we already have some bits in our internal buffer concatenate |
|
304 |
++ both inputs first. */ |
|
305 |
++ if (ctx->buflen != 0) { |
|
306 |
++ size_t left_over = (size_t)ctx->buflen; |
|
307 |
++ size_t add = (size_t)(256 - left_over > len ? len : 256 - left_over); |
|
308 |
++ |
|
309 |
++ memcpy(&ctx->buffer[left_over], buffer, add); |
|
310 |
++ ctx->buflen += add; |
|
311 |
++ |
|
312 |
++ if (ctx->buflen > 128) { |
|
313 |
++ sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx); |
|
314 |
++ |
|
315 |
++ ctx->buflen &= 127; |
|
316 |
++ /* The regions in the following copy operation cannot overlap. */ |
|
317 |
++ memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~127], |
|
318 |
++ (size_t)ctx->buflen); |
|
319 |
++ } |
|
320 |
++ |
|
321 |
++ buffer = (const char *) buffer + add; |
|
322 |
++ len -= add; |
|
323 |
++ } |
|
324 |
++ |
|
325 |
++ /* Process available complete blocks. */ |
|
326 |
++ if (len >= 128) { |
|
327 |
++#if !_STRING_ARCH_unaligned |
|
328 |
++/* To check alignment gcc has an appropriate operator. Other |
|
329 |
++ compilers don't. */ |
|
330 |
++# if __GNUC__ >= 2 |
|
331 |
++# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0) |
|
332 |
++# else |
|
333 |
++# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof(uint64_t) != 0) |
|
334 |
++# endif |
|
335 |
++ if (UNALIGNED_P(buffer)) |
|
336 |
++ while (len > 128) { |
|
337 |
++ sha512_process_block(memcpy(ctx->buffer, buffer, 128), 128, ctx); |
|
338 |
++ buffer = (const char *) buffer + 128; |
|
339 |
++ len -= 128; |
|
340 |
++ } |
|
341 |
++ else |
|
342 |
++#endif |
|
343 |
++ { |
|
344 |
++ sha512_process_block(buffer, len & ~127, ctx); |
|
345 |
++ buffer = (const char *) buffer + (len & ~127); |
|
346 |
++ len &= 127; |
|
347 |
++ } |
|
348 |
++ } |
|
349 |
++ |
|
350 |
++ /* Move remaining bytes into internal buffer. */ |
|
351 |
++ if (len > 0) { |
|
352 |
++ size_t left_over = (size_t)ctx->buflen; |
|
353 |
++ |
|
354 |
++ memcpy(&ctx->buffer[left_over], buffer, len); |
|
355 |
++ left_over += len; |
|
356 |
++ if (left_over >= 128) { |
|
357 |
++ sha512_process_block(ctx->buffer, 128, ctx); |
|
358 |
++ left_over -= 128; |
|
359 |
++ memcpy(ctx->buffer, &ctx->buffer[128], left_over); |
|
360 |
++ } |
|
361 |
++ ctx->buflen = left_over; |
|
362 |
++ } |
|
363 |
++} |
|
364 |
++ |
|
365 |
++ |
|
366 |
++/* Define our magic string to mark salt for SHA512 "encryption" |
|
367 |
++ replacement. */ |
|
368 |
++static const char sha512_salt_prefix[] = "$6$"; |
|
369 |
++ |
|
370 |
++/* Prefix for optional rounds specification. */ |
|
371 |
++static const char sha512_rounds_prefix[] = "rounds="; |
|
372 |
++ |
|
373 |
++/* Maximum salt string length. */ |
|
374 |
++#define SALT_LEN_MAX 16 |
|
375 |
++/* Default number of rounds if not explicitly specified. */ |
|
376 |
++#define ROUNDS_DEFAULT 5000 |
|
377 |
++/* Minimum number of rounds. */ |
|
378 |
++#define ROUNDS_MIN 1000 |
|
379 |
++/* Maximum number of rounds. */ |
|
380 |
++#define ROUNDS_MAX 999999999 |
|
381 |
++ |
|
382 |
++/* Table with characters for base64 transformation. */ |
|
383 |
++static const char b64t[64] = |
|
384 |
++"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
|
385 |
++ |
|
386 |
++ |
|
387 |
++char * |
|
388 |
++php_sha512_crypt_r(const char *key, const char *salt, char *buffer, int buflen) { |
|
389 |
++#ifdef PHP_WIN32 |
|
390 |
++ __declspec(align(64)) unsigned char alt_result[64]; |
|
391 |
++ __declspec(align(64)) unsigned char temp_result[64]; |
|
392 |
++#else |
|
393 |
++ unsigned char alt_result[64] |
|
394 |
++ __attribute__ ((__aligned__ (__alignof__ (uint64_t)))); |
|
395 |
++ unsigned char temp_result[64] |
|
396 |
++ __attribute__ ((__aligned__ (__alignof__ (uint64_t)))); |
|
397 |
++#endif |
|
398 |
++ struct sha512_ctx ctx; |
|
399 |
++ struct sha512_ctx alt_ctx; |
|
400 |
++ size_t salt_len; |
|
401 |
++ size_t key_len; |
|
402 |
++ size_t cnt; |
|
403 |
++ char *cp; |
|
404 |
++ char *copied_key = NULL; |
|
405 |
++ char *copied_salt = NULL; |
|
406 |
++ char *p_bytes; |
|
407 |
++ char *s_bytes; |
|
408 |
++ /* Default number of rounds. */ |
|
409 |
++ size_t rounds = ROUNDS_DEFAULT; |
|
410 |
++ bool rounds_custom = false; |
|
411 |
++ |
|
412 |
++ /* Find beginning of salt string. The prefix should normally always |
|
413 |
++ be present. Just in case it is not. */ |
|
414 |
++ if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0) { |
|
415 |
++ /* Skip salt prefix. */ |
|
416 |
++ salt += sizeof(sha512_salt_prefix) - 1; |
|
417 |
++ } |
|
418 |
++ |
|
419 |
++ if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1) == 0) { |
|
420 |
++ const char *num = salt + sizeof(sha512_rounds_prefix) - 1; |
|
421 |
++ char *endp; |
|
422 |
++ unsigned long int srounds = strtoul(num, &endp, 10); |
|
423 |
++ |
|
424 |
++ if (*endp == '$') { |
|
425 |
++ salt = endp + 1; |
|
426 |
++ rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); |
|
427 |
++ rounds_custom = true; |
|
428 |
++ } |
|
429 |
++ } |
|
430 |
++ |
|
431 |
++ salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); |
|
432 |
++ key_len = strlen(key); |
|
433 |
++ |
|
434 |
++ if ((key - (char *) 0) % __alignof__ (uint64_t) != 0) { |
|
435 |
++ char *tmp = (char *) alloca (key_len + __alignof__ (uint64_t)); |
|
436 |
++ key = copied_key = |
|
437 |
++ memcpy(tmp + __alignof__(uint64_t) - (tmp - (char *) 0) % __alignof__(uint64_t), key, key_len); |
|
438 |
++ } |
|
439 |
++ |
|
440 |
++ if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0) { |
|
441 |
++ char *tmp = (char *) alloca(salt_len + __alignof__(uint64_t)); |
|
442 |
++ |
|
443 |
++ salt = copied_salt = memcpy(tmp + __alignof__(uint64_t) - (tmp - (char *) 0) % __alignof__(uint64_t), salt, salt_len); |
|
444 |
++ } |
|
445 |
++ |
|
446 |
++ /* Prepare for the real work. */ |
|
447 |
++ sha512_init_ctx(&ctx); |
|
448 |
++ |
|
449 |
++ /* Add the key string. */ |
|
450 |
++ sha512_process_bytes(key, key_len, &ctx); |
|
451 |
++ |
|
452 |
++ /* The last part is the salt string. This must be at most 16 |
|
453 |
++ characters and it ends at the first `$' character (for |
|
454 |
++ compatibility with existing implementations). */ |
|
455 |
++ sha512_process_bytes(salt, salt_len, &ctx); |
|
456 |
++ |
|
457 |
++ |
|
458 |
++ /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The |
|
459 |
++ final result will be added to the first context. */ |
|
460 |
++ sha512_init_ctx(&alt_ctx); |
|
461 |
++ |
|
462 |
++ /* Add key. */ |
|
463 |
++ sha512_process_bytes(key, key_len, &alt_ctx); |
|
464 |
++ |
|
465 |
++ /* Add salt. */ |
|
466 |
++ sha512_process_bytes(salt, salt_len, &alt_ctx); |
|
467 |
++ |
|
468 |
++ /* Add key again. */ |
|
469 |
++ sha512_process_bytes(key, key_len, &alt_ctx); |
|
470 |
++ |
|
471 |
++ /* Now get result of this (64 bytes) and add it to the other |
|
472 |
++ context. */ |
|
473 |
++ sha512_finish_ctx(&alt_ctx, alt_result); |
|
474 |
++ |
|
475 |
++ /* Add for any character in the key one byte of the alternate sum. */ |
|
476 |
++ for (cnt = key_len; cnt > 64; cnt -= 64) { |
|
477 |
++ sha512_process_bytes(alt_result, 64, &ctx); |
|
478 |
++ } |
|
479 |
++ sha512_process_bytes(alt_result, cnt, &ctx); |
|
480 |
++ |
|
481 |
++ /* Take the binary representation of the length of the key and for every |
|
482 |
++ 1 add the alternate sum, for every 0 the key. */ |
|
483 |
++ for (cnt = key_len; cnt > 0; cnt >>= 1) { |
|
484 |
++ if ((cnt & 1) != 0) { |
|
485 |
++ sha512_process_bytes(alt_result, 64, &ctx); |
|
486 |
++ } else { |
|
487 |
++ sha512_process_bytes(key, key_len, &ctx); |
|
488 |
++ } |
|
489 |
++ } |
|
490 |
++ |
|
491 |
++ /* Create intermediate result. */ |
|
492 |
++ sha512_finish_ctx(&ctx, alt_result); |
|
493 |
++ |
|
494 |
++ /* Start computation of P byte sequence. */ |
|
495 |
++ sha512_init_ctx(&alt_ctx); |
|
496 |
++ |
|
497 |
++ /* For every character in the password add the entire password. */ |
|
498 |
++ for (cnt = 0; cnt < key_len; ++cnt) { |
|
499 |
++ sha512_process_bytes(key, key_len, &alt_ctx); |
|
500 |
++ } |
|
501 |
++ |
|
502 |
++ /* Finish the digest. */ |
|
503 |
++ sha512_finish_ctx(&alt_ctx, temp_result); |
|
504 |
++ |
|
505 |
++ /* Create byte sequence P. */ |
|
506 |
++ cp = p_bytes = alloca(key_len); |
|
507 |
++ for (cnt = key_len; cnt >= 64; cnt -= 64) { |
|
508 |
++ cp = mempcpy((void *) cp, (const void *)temp_result, 64); |
|
509 |
++ } |
|
510 |
++ |
|
511 |
++ memcpy(cp, temp_result, cnt); |
|
512 |
++ |
|
513 |
++ /* Start computation of S byte sequence. */ |
|
514 |
++ sha512_init_ctx(&alt_ctx); |
|
515 |
++ |
|
516 |
++ /* For every character in the password add the entire password. */ |
|
517 |
++ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) { |
|
518 |
++ sha512_process_bytes(salt, salt_len, &alt_ctx); |
|
519 |
++ } |
|
520 |
++ |
|
521 |
++ /* Finish the digest. */ |
|
522 |
++ sha512_finish_ctx(&alt_ctx, temp_result); |
|
523 |
++ |
|
524 |
++ /* Create byte sequence S. */ |
|
525 |
++ cp = s_bytes = alloca(salt_len); |
|
526 |
++ for (cnt = salt_len; cnt >= 64; cnt -= 64) { |
|
527 |
++ cp = mempcpy(cp, temp_result, 64); |
|
528 |
++ } |
|
529 |
++ memcpy(cp, temp_result, cnt); |
|
530 |
++ |
|
531 |
++ /* Repeatedly run the collected hash value through SHA512 to burn |
|
532 |
++ CPU cycles. */ |
|
533 |
++ for (cnt = 0; cnt < rounds; ++cnt) { |
|
534 |
++ /* New context. */ |
|
535 |
++ sha512_init_ctx(&ctx); |
|
536 |
++ |
|
537 |
++ /* Add key or last result. */ |
|
538 |
++ if ((cnt & 1) != 0) { |
|
539 |
++ sha512_process_bytes(p_bytes, key_len, &ctx); |
|
540 |
++ } else { |
|
541 |
++ sha512_process_bytes(alt_result, 64, &ctx); |
|
542 |
++ } |
|
543 |
++ |
|
544 |
++ /* Add salt for numbers not divisible by 3. */ |
|
545 |
++ if (cnt % 3 != 0) { |
|
546 |
++ sha512_process_bytes(s_bytes, salt_len, &ctx); |
|
547 |
++ } |
|
548 |
++ |
|
549 |
++ /* Add key for numbers not divisible by 7. */ |
|
550 |
++ if (cnt % 7 != 0) { |
|
551 |
++ sha512_process_bytes(p_bytes, key_len, &ctx); |
|
552 |
++ } |
|
553 |
++ |
|
554 |
++ /* Add key or last result. */ |
|
555 |
++ if ((cnt & 1) != 0) { |
|
556 |
++ sha512_process_bytes(alt_result, 64, &ctx); |
|
557 |
++ } else { |
|
558 |
++ sha512_process_bytes(p_bytes, key_len, &ctx); |
|
559 |
++ } |
|
560 |
++ |
|
561 |
++ /* Create intermediate result. */ |
|
562 |
++ sha512_finish_ctx(&ctx, alt_result); |
|
563 |
++ } |
|
564 |
++ |
|
565 |
++ /* Now we can construct the result string. It consists of three |
|
566 |
++ parts. */ |
|
567 |
++ cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen)); |
|
568 |
++ buflen -= sizeof(sha512_salt_prefix) - 1; |
|
569 |
++ |
|
570 |
++ if (rounds_custom) { |
|
571 |
++#ifdef PHP_WIN32 |
|
572 |
++ int n = _snprintf(cp, MAX(0, buflen), "%s%u$", sha512_rounds_prefix, rounds); |
|
573 |
++#else |
|
574 |
++ int n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha512_rounds_prefix, rounds); |
|
575 |
++#endif |
|
576 |
++ cp += n; |
|
577 |
++ buflen -= n; |
|
578 |
++ } |
|
579 |
++ |
|
580 |
++ cp = stpncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len)); |
|
581 |
++ buflen -= (int) MIN((size_t) MAX(0, buflen), salt_len); |
|
582 |
++ |
|
583 |
++ if (buflen > 0) { |
|
584 |
++ *cp++ = '$'; |
|
585 |
++ --buflen; |
|
586 |
++ } |
|
587 |
++ |
|
588 |
++#define b64_from_24bit(B2, B1, B0, N) \ |
|
589 |
++ do { \ |
|
590 |
++ unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ |
|
591 |
++ int n = (N); \ |
|
592 |
++ while (n-- > 0 && buflen > 0) \ |
|
593 |
++ { \ |
|
594 |
++ *cp++ = b64t[w & 0x3f]; \ |
|
595 |
++ --buflen; \ |
|
596 |
++ w >>= 6; \ |
|
597 |
++ } \ |
|
598 |
++ } while (0) |
|
599 |
++ |
|
600 |
++ b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4); |
|
601 |
++ b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4); |
|
602 |
++ b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4); |
|
603 |
++ b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4); |
|
604 |
++ b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4); |
|
605 |
++ b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4); |
|
606 |
++ b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4); |
|
607 |
++ b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4); |
|
608 |
++ b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4); |
|
609 |
++ b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4); |
|
610 |
++ b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4); |
|
611 |
++ b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4); |
|
612 |
++ b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4); |
|
613 |
++ b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4); |
|
614 |
++ b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4); |
|
615 |
++ b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4); |
|
616 |
++ b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4); |
|
617 |
++ b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4); |
|
618 |
++ b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4); |
|
619 |
++ b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4); |
|
620 |
++ b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4); |
|
621 |
++ b64_from_24bit(0, 0, alt_result[63], 2); |
|
622 |
++ |
|
623 |
++ if (buflen <= 0) { |
|
624 |
++ errno = ERANGE; |
|
625 |
++ buffer = NULL; |
|
626 |
++ } else { |
|
627 |
++ *cp = '\0'; /* Terminate the string. */ |
|
628 |
++ } |
|
629 |
++ |
|
630 |
++ /* Clear the buffer for the intermediate result so that people |
|
631 |
++ attaching to processes or reading core dumps cannot get any |
|
632 |
++ information. We do it in this way to clear correct_words[] |
|
633 |
++ inside the SHA512 implementation as well. */ |
|
634 |
++ sha512_init_ctx(&ctx); |
|
635 |
++ sha512_finish_ctx(&ctx, alt_result); |
|
636 |
++ memset(temp_result, '\0', sizeof(temp_result)); |
|
637 |
++ memset(p_bytes, '\0', key_len); |
|
638 |
++ memset(s_bytes, '\0', salt_len); |
|
639 |
++ memset(&ctx, '\0', sizeof(ctx)); |
|
640 |
++ memset(&alt_ctx, '\0', sizeof(alt_ctx)); |
|
641 |
++ if (copied_key != NULL) { |
|
642 |
++ memset(copied_key, '\0', key_len); |
|
643 |
++ } |
|
644 |
++ if (copied_salt != NULL) { |
|
645 |
++ memset(copied_salt, '\0', salt_len); |
|
646 |
++ } |
|
647 |
++ |
|
648 |
++ return buffer; |
|
649 |
++} |
|
650 |
++ |
|
651 |
++ |
|
652 |
++/* This entry point is equivalent to the `crypt' function in Unix |
|
653 |
++ libcs. */ |
|
654 |
++char * |
|
655 |
++php_sha512_crypt(const char *key, const char *salt) { |
|
656 |
++ /* We don't want to have an arbitrary limit in the size of the |
|
657 |
++ password. We can compute an upper bound for the size of the |
|
658 |
++ result in advance and so we can prepare the buffer we pass to |
|
659 |
++ `sha512_crypt_r'. */ |
|
660 |
++ static char *buffer; |
|
661 |
++ static int buflen; |
|
662 |
++ int needed = (int)(sizeof(sha512_salt_prefix) - 1 |
|
663 |
++ + sizeof(sha512_rounds_prefix) + 9 + 1 |
|
664 |
++ + strlen(salt) + 1 + 86 + 1); |
|
665 |
++ |
|
666 |
++ if (buflen < needed) { |
|
667 |
++ char *new_buffer = (char *) realloc(buffer, needed); |
|
668 |
++ if (new_buffer == NULL) { |
|
669 |
++ return NULL; |
|
670 |
++ } |
|
671 |
++ |
|
672 |
++ buffer = new_buffer; |
|
673 |
++ buflen = needed; |
|
674 |
++ } |
|
675 |
++ |
|
676 |
++ return php_sha512_crypt_r (key, salt, buffer, buflen); |
|
677 |
++} |
|
678 |
++ |
|
679 |
++#ifdef TEST |
|
680 |
++static const struct { |
|
681 |
++ const char *input; |
|
682 |
++ const char result[64]; |
|
683 |
++} tests[] = |
|
684 |
++ { |
|
685 |
++ /* Test vectors from FIPS 180-2: appendix C.1. */ |
|
686 |
++ { "abc", |
|
687 |
++ "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31" |
|
688 |
++ "\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a" |
|
689 |
++ "\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd" |
|
690 |
++ "\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f" }, |
|
691 |
++ /* Test vectors from FIPS 180-2: appendix C.2. */ |
|
692 |
++ { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" |
|
693 |
++ "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", |
|
694 |
++ "\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f" |
|
695 |
++ "\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18" |
|
696 |
++ "\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a" |
|
697 |
++ "\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09" }, |
|
698 |
++ /* Test vectors from the NESSIE project. */ |
|
699 |
++ { "", |
|
700 |
++ "\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07" |
|
701 |
++ "\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce" |
|
702 |
++ "\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f" |
|
703 |
++ "\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e" }, |
|
704 |
++ { "a", |
|
705 |
++ "\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2" |
|
706 |
++ "\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53" |
|
707 |
++ "\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46" |
|
708 |
++ "\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75" }, |
|
709 |
++ { "message digest", |
|
710 |
++ "\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51" |
|
711 |
++ "\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33" |
|
712 |
++ "\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20" |
|
713 |
++ "\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c" }, |
|
714 |
++ { "abcdefghijklmnopqrstuvwxyz", |
|
715 |
++ "\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81" |
|
716 |
++ "\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29" |
|
717 |
++ "\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59" |
|
718 |
++ "\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1" }, |
|
719 |
++ { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
|
720 |
++ "\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16" |
|
721 |
++ "\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35" |
|
722 |
++ "\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0" |
|
723 |
++ "\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45" }, |
|
724 |
++ { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", |
|
725 |
++ "\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93" |
|
726 |
++ "\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4" |
|
727 |
++ "\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab" |
|
728 |
++ "\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94" }, |
|
729 |
++ { "123456789012345678901234567890123456789012345678901234567890" |
|
730 |
++ "12345678901234567890", |
|
731 |
++ "\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95" |
|
732 |
++ "\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a" |
|
733 |
++ "\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1" |
|
734 |
++ "\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43" } |
|
735 |
++ }; |
|
736 |
++#define ntests (sizeof (tests) / sizeof (tests[0])) |
|
737 |
++ |
|
738 |
++ |
|
739 |
++static const struct |
|
740 |
++{ |
|
741 |
++ const char *salt; |
|
742 |
++ const char *input; |
|
743 |
++ const char *expected; |
|
744 |
++} tests2[] = { |
|
745 |
++ { "$6$saltstring", "Hello world!", |
|
746 |
++ "$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu" |
|
747 |
++ "esI68u4OTLiBFdcbYEdFCoEOfaS35inz1"}, |
|
748 |
++ { "$6$rounds=10000$saltstringsaltstring", "Hello world!", |
|
749 |
++ "$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb" |
|
750 |
++ "HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v." }, |
|
751 |
++ { "$6$rounds=5000$toolongsaltstring", "This is just a test", |
|
752 |
++ "$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ" |
|
753 |
++ "zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0" }, |
|
754 |
++ { "$6$rounds=1400$anotherlongsaltstring", |
|
755 |
++ "a very much longer text to encrypt. This one even stretches over more" |
|
756 |
++ "than one line.", |
|
757 |
++ "$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP" |
|
758 |
++ "vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1" }, |
|
759 |
++ { "$6$rounds=77777$short", |
|
760 |
++ "we have a short salt string but not a short password", |
|
761 |
++ "$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g" |
|
762 |
++ "ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0" }, |
|
763 |
++ { "$6$rounds=123456$asaltof16chars..", "a short string", |
|
764 |
++ "$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc" |
|
765 |
++ "elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1" }, |
|
766 |
++ { "$6$rounds=10$roundstoolow", "the minimum number is still observed", |
|
767 |
++ "$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x" |
|
768 |
++ "hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX." }, |
|
769 |
++}; |
|
770 |
++#define ntests2 (sizeof (tests2) / sizeof (tests2[0])) |
|
771 |
++ |
|
772 |
++ |
|
773 |
++int main (void) { |
|
774 |
++ struct sha512_ctx ctx; |
|
775 |
++ char sum[64]; |
|
776 |
++ int result = 0; |
|
777 |
++ int cnt; |
|
778 |
++ int i; |
|
779 |
++ char buf[1000]; |
|
780 |
++ static const char expected[64] = |
|
781 |
++ "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63" |
|
782 |
++ "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb" |
|
783 |
++ "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b" |
|
784 |
++ "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b"; |
|
785 |
++ |
|
786 |
++ for (cnt = 0; cnt < (int) ntests; ++cnt) { |
|
787 |
++ sha512_init_ctx (&ctx); |
|
788 |
++ sha512_process_bytes (tests[cnt].input, strlen (tests[cnt].input), &ctx); |
|
789 |
++ sha512_finish_ctx (&ctx, sum); |
|
790 |
++ if (memcmp (tests[cnt].result, sum, 64) != 0) { |
|
791 |
++ printf ("test %d run %d failed\n", cnt, 1); |
|
792 |
++ result = 1; |
|
793 |
++ } |
|
794 |
++ |
|
795 |
++ sha512_init_ctx (&ctx); |
|
796 |
++ for (i = 0; tests[cnt].input[i] != '\0'; ++i) { |
|
797 |
++ sha512_process_bytes (&tests[cnt].input[i], 1, &ctx); |
|
798 |
++ } |
|
799 |
++ sha512_finish_ctx (&ctx, sum); |
|
800 |
++ if (memcmp (tests[cnt].result, sum, 64) != 0) { |
|
801 |
++ printf ("test %d run %d failed\n", cnt, 2); |
|
802 |
++ result = 1; |
|
803 |
++ } |
|
804 |
++ } |
|
805 |
++ |
|
806 |
++ /* Test vector from FIPS 180-2: appendix C.3. */ |
|
807 |
++ |
|
808 |
++ memset (buf, 'a', sizeof (buf)); |
|
809 |
++ sha512_init_ctx (&ctx); |
|
810 |
++ for (i = 0; i < 1000; ++i) { |
|
811 |
++ sha512_process_bytes (buf, sizeof (buf), &ctx); |
|
812 |
++ } |
|
813 |
++ |
|
814 |
++ sha512_finish_ctx (&ctx, sum); |
|
815 |
++ if (memcmp (expected, sum, 64) != 0) { |
|
816 |
++ printf ("test %d failed\n", cnt); |
|
817 |
++ result = 1; |
|
818 |
++ } |
|
819 |
++ |
|
820 |
++ for (cnt = 0; cnt < ntests2; ++cnt) { |
|
821 |
++ char *cp = php_sha512_crypt(tests2[cnt].input, tests2[cnt].salt); |
|
822 |
++ |
|
823 |
++ if (strcmp (cp, tests2[cnt].expected) != 0) { |
|
824 |
++ printf ("test %d: expected \"%s\", got \"%s\"\n", |
|
825 |
++ cnt, tests2[cnt].expected, cp); |
|
826 |
++ result = 1; |
|
827 |
++ } |
|
828 |
++ } |
|
829 |
++ |
|
830 |
++ if (result == 0) { |
|
831 |
++ puts ("all tests OK"); |
|
832 |
++ } |
|
833 |
++ |
|
834 |
++ return result; |
|
835 |
++} |
|
836 |
++#endif |
|
837 |
+Index: ext/standard/crypt_sha256.c |
|
838 |
+=================================================================== |
|
839 |
+--- ext/standard/crypt_sha256.c (Revision 0) |
|
840 |
++++ ext/standard/crypt_sha256.c (Revision 291899) |
|
841 |
+@@ -0,0 +1,754 @@ |
|
842 |
++/* SHA256-based Unix crypt implementation. |
|
843 |
++ Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. */ |
|
844 |
++/* Windows VC++ port by Pierre Joye <pierre@php.net> */ |
|
845 |
++ |
|
846 |
++#ifndef PHP_WIN32 |
|
847 |
++# include <endian.h> |
|
848 |
++# include "php.h" |
|
849 |
++# include "php_main.h" |
|
850 |
++#endif |
|
851 |
++ |
|
852 |
++#include <errno.h> |
|
853 |
++#include <limits.h> |
|
854 |
++ |
|
855 |
++#ifdef PHP_WIN32 |
|
856 |
++# include "win32/php_stdint.h" |
|
857 |
++# include "win32/php_stdbool.h" |
|
858 |
++# define __alignof__ __alignof |
|
859 |
++# define alloca _alloca |
|
860 |
++#else |
|
861 |
++# if HAVE_INTTYPES_H |
|
862 |
++# include <inttypes.h> |
|
863 |
++# elif HAVE_STDINT_H |
|
864 |
++# include <stdint.h> |
|
865 |
++# endif |
|
866 |
++# include <stdbool.h> |
|
867 |
++#endif |
|
868 |
++ |
|
869 |
++#include <stdio.h> |
|
870 |
++#include <stdlib.h> |
|
871 |
++ |
|
872 |
++#ifdef PHP_WIN32 |
|
873 |
++# include <string.h> |
|
874 |
++#else |
|
875 |
++# include <sys/param.h> |
|
876 |
++# include <sys/types.h> |
|
877 |
++# if HAVE_STRING_H |
|
878 |
++//# define __USE_GNU 1 |
|
879 |
++# include <string.h> |
|
880 |
++# else |
|
881 |
++# include <strings.h> |
|
882 |
++# endif |
|
883 |
++#endif |
|
884 |
++ |
|
885 |
++#ifndef HAVE_STRPNCPY |
|
886 |
++char * stpncpy(char *dst, const char *src, size_t len) |
|
887 |
++{ |
|
888 |
++ size_t n = strlen(src); |
|
889 |
++ if (n > len) { |
|
890 |
++ n = len; |
|
891 |
++ } |
|
892 |
++ return strncpy(dst, src, len) + n; |
|
893 |
++} |
|
894 |
++#endif |
|
895 |
++ |
|
896 |
++#ifndef HAVE_MEMPCPY |
|
897 |
++void * mempcpy(void * dst, const void * src, size_t len) |
|
898 |
++{ |
|
899 |
++ return (((char *)memcpy(dst, src, len)) + len); |
|
900 |
++} |
|
901 |
++#endif |
|
902 |
++ |
|
903 |
++#ifndef MIN |
|
904 |
++# define MIN(a, b) (((a) < (b)) ? (a) : (b)) |
|
905 |
++#endif |
|
906 |
++#ifndef MAX |
|
907 |
++# define MAX(a, b) (((a) > (b)) ? (a) : (b)) |
|
908 |
++#endif |
|
909 |
++ |
|
910 |
++/* Structure to save state of computation between the single steps. */ |
|
911 |
++struct sha256_ctx { |
|
912 |
++ uint32_t H[8]; |
|
913 |
++ |
|
914 |
++ uint32_t total[2]; |
|
915 |
++ uint32_t buflen; |
|
916 |
++ char buffer[128]; /* NB: always correctly aligned for uint32_t. */ |
|
917 |
++}; |
|
918 |
++ |
|
919 |
++#if PHP_WIN32 || (__BYTE_ORDER == __LITTLE_ENDIAN) |
|
920 |
++# define SWAP(n) \ |
|
921 |
++ (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) |
|
922 |
++#else |
|
923 |
++# define SWAP(n) (n) |
|
924 |
++#endif |
|
925 |
++ |
|
926 |
++/* This array contains the bytes used to pad the buffer to the next |
|
927 |
++ 64-byte boundary. (FIPS 180-2:5.1.1) */ |
|
928 |
++static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; |
|
929 |
++ |
|
930 |
++ |
|
931 |
++/* Constants for SHA256 from FIPS 180-2:4.2.2. */ |
|
932 |
++static const uint32_t K[64] = { |
|
933 |
++ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
|
934 |
++ 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
935 |
++ 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
|
936 |
++ 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
937 |
++ 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
|
938 |
++ 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
939 |
++ 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
|
940 |
++ 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
941 |
++ 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
|
942 |
++ 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
943 |
++ 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
|
944 |
++ 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
945 |
++ 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
|
946 |
++ 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
947 |
++ 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
|
948 |
++ 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
|
949 |
++}; |
|
950 |
++ |
|
951 |
++ |
|
952 |
++/* Process LEN bytes of BUFFER, accumulating context into CTX. |
|
953 |
++ It is assumed that LEN % 64 == 0. */ |
|
954 |
++static void sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx) { |
|
955 |
++ const uint32_t *words = buffer; |
|
956 |
++ size_t nwords = len / sizeof (uint32_t); |
|
957 |
++ unsigned int t; |
|
958 |
++ |
|
959 |
++ uint32_t a = ctx->H[0]; |
|
960 |
++ uint32_t b = ctx->H[1]; |
|
961 |
++ uint32_t c = ctx->H[2]; |
|
962 |
++ uint32_t d = ctx->H[3]; |
|
963 |
++ uint32_t e = ctx->H[4]; |
|
964 |
++ uint32_t f = ctx->H[5]; |
|
965 |
++ uint32_t g = ctx->H[6]; |
|
966 |
++ uint32_t h = ctx->H[7]; |
|
967 |
++ |
|
968 |
++ /* First increment the byte count. FIPS 180-2 specifies the possible |
|
969 |
++ length of the file up to 2^64 bits. Here we only compute the |
|
970 |
++ number of bytes. Do a double word increment. */ |
|
971 |
++ ctx->total[0] += len; |
|
972 |
++ if (ctx->total[0] < len) { |
|
973 |
++ ++ctx->total[1]; |
|
974 |
++ } |
|
975 |
++ |
|
976 |
++ /* Process all bytes in the buffer with 64 bytes in each round of |
|
977 |
++ the loop. */ |
|
978 |
++ while (nwords > 0) { |
|
979 |
++ uint32_t W[64]; |
|
980 |
++ uint32_t a_save = a; |
|
981 |
++ uint32_t b_save = b; |
|
982 |
++ uint32_t c_save = c; |
|
983 |
++ uint32_t d_save = d; |
|
984 |
++ uint32_t e_save = e; |
|
985 |
++ uint32_t f_save = f; |
|
986 |
++ uint32_t g_save = g; |
|
987 |
++ uint32_t h_save = h; |
|
988 |
++ |
|
989 |
++ /* Operators defined in FIPS 180-2:4.1.2. */ |
|
990 |
++#define Ch(x, y, z) ((x & y) ^ (~x & z)) |
|
991 |
++#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
|
992 |
++#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22)) |
|
993 |
++#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25)) |
|
994 |
++#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3)) |
|
995 |
++#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10)) |
|
996 |
++ |
|
997 |
++ /* It is unfortunate that C does not provide an operator for |
|
998 |
++ cyclic rotation. Hope the C compiler is smart enough. */ |
|
999 |
++#define CYCLIC(w, s) ((w >> s) | (w << (32 - s))) |
|
1000 |
++ |
|
1001 |
++ /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ |
|
1002 |
++ for (t = 0; t < 16; ++t) { |
|
1003 |
++ W[t] = SWAP (*words); |
|
1004 |
++ ++words; |
|
1005 |
++ } |
|
1006 |
++ for (t = 16; t < 64; ++t) |
|
1007 |
++ W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; |
|
1008 |
++ |
|
1009 |
++ /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ |
|
1010 |
++ for (t = 0; t < 64; ++t) { |
|
1011 |
++ uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; |
|
1012 |
++ uint32_t T2 = S0 (a) + Maj (a, b, c); |
|
1013 |
++ h = g; |
|
1014 |
++ g = f; |
|
1015 |
++ f = e; |
|
1016 |
++ e = d + T1; |
|
1017 |
++ d = c; |
|
1018 |
++ c = b; |
|
1019 |
++ b = a; |
|
1020 |
++ a = T1 + T2; |
|
1021 |
++ } |
|
1022 |
++ |
|
1023 |
++ /* Add the starting values of the context according to FIPS 180-2:6.2.2 |
|
1024 |
++ step 4. */ |
|
1025 |
++ a += a_save; |
|
1026 |
++ b += b_save; |
|
1027 |
++ c += c_save; |
|
1028 |
++ d += d_save; |
|
1029 |
++ e += e_save; |
|
1030 |
++ f += f_save; |
|
1031 |
++ g += g_save; |
|
1032 |
++ h += h_save; |
|
1033 |
++ |
|
1034 |
++ /* Prepare for the next round. */ |
|
1035 |
++ nwords -= 16; |
|
1036 |
++ } |
|
1037 |
++ |
|
1038 |
++ /* Put checksum in context given as argument. */ |
|
1039 |
++ ctx->H[0] = a; |
|
1040 |
++ ctx->H[1] = b; |
|
1041 |
++ ctx->H[2] = c; |
|
1042 |
++ ctx->H[3] = d; |
|
1043 |
++ ctx->H[4] = e; |
|
1044 |
++ ctx->H[5] = f; |
|
1045 |
++ ctx->H[6] = g; |
|
1046 |
++ ctx->H[7] = h; |
|
1047 |
++} |
|
1048 |
++ |
|
1049 |
++ |
|
1050 |
++/* Initialize structure containing state of computation. |
|
1051 |
++ (FIPS 180-2:5.3.2) */ |
|
1052 |
++static void sha256_init_ctx(struct sha256_ctx *ctx) { |
|
1053 |
++ ctx->H[0] = 0x6a09e667; |
|
1054 |
++ ctx->H[1] = 0xbb67ae85; |
|
1055 |
++ ctx->H[2] = 0x3c6ef372; |
|
1056 |
++ ctx->H[3] = 0xa54ff53a; |
|
1057 |
++ ctx->H[4] = 0x510e527f; |
|
1058 |
++ ctx->H[5] = 0x9b05688c; |
|
1059 |
++ ctx->H[6] = 0x1f83d9ab; |
|
1060 |
++ ctx->H[7] = 0x5be0cd19; |
|
1061 |
++ |
|
1062 |
++ ctx->total[0] = ctx->total[1] = 0; |
|
1063 |
++ ctx->buflen = 0; |
|
1064 |
++} |
|
1065 |
++ |
|
1066 |
++ |
|
1067 |
++/* Process the remaining bytes in the internal buffer and the usual |
|
1068 |
++ prolog according to the standard and write the result to RESBUF. |
|
1069 |
++ |
|
1070 |
++ IMPORTANT: On some systems it is required that RESBUF is correctly |
|
1071 |
++ aligned for a 32 bits value. */ |
|
1072 |
++static void * sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf) { |
|
1073 |
++ /* Take yet unprocessed bytes into account. */ |
|
1074 |
++ uint32_t bytes = ctx->buflen; |
|
1075 |
++ size_t pad; |
|
1076 |
++ unsigned int i; |
|
1077 |
++ |
|
1078 |
++ /* Now count remaining bytes. */ |
|
1079 |
++ ctx->total[0] += bytes; |
|
1080 |
++ if (ctx->total[0] < bytes) { |
|
1081 |
++ ++ctx->total[1]; |
|
1082 |
++ } |
|
1083 |
++ |
|
1084 |
++ pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; |
|
1085 |
++ memcpy(&ctx->buffer[bytes], fillbuf, pad); |
|
1086 |
++ |
|
1087 |
++ /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
|
1088 |
++ *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3); |
|
1089 |
++ *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) | |
|
1090 |
++ (ctx->total[0] >> 29)); |
|
1091 |
++ |
|
1092 |
++ /* Process last bytes. */ |
|
1093 |
++ sha256_process_block(ctx->buffer, bytes + pad + 8, ctx); |
|
1094 |
++ |
|
1095 |
++ /* Put result from CTX in first 32 bytes following RESBUF. */ |
|
1096 |
++ for (i = 0; i < 8; ++i) { |
|
1097 |
++ ((uint32_t *) resbuf)[i] = SWAP(ctx->H[i]); |
|
1098 |
++ } |
|
1099 |
++ |
|
1100 |
++ return resbuf; |
|
1101 |
++} |
|
1102 |
++ |
|
1103 |
++ |
|
1104 |
++static void sha256_process_bytes(const void *buffer, size_t len, struct sha256_ctx *ctx) { |
|
1105 |
++ /* When we already have some bits in our internal buffer concatenate |
|
1106 |
++ both inputs first. */ |
|
1107 |
++ if (ctx->buflen != 0) { |
|
1108 |
++ size_t left_over = ctx->buflen; |
|
1109 |
++ size_t add = 128 - left_over > len ? len : 128 - left_over; |
|
1110 |
++ |
|
1111 |
++ memcpy(&ctx->buffer[left_over], buffer, add); |
|
1112 |
++ ctx->buflen += add; |
|
1113 |
++ |
|
1114 |
++ if (ctx->buflen > 64) { |
|
1115 |
++ sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx); |
|
1116 |
++ ctx->buflen &= 63; |
|
1117 |
++ /* The regions in the following copy operation cannot overlap. */ |
|
1118 |
++ memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], ctx->buflen); |
|
1119 |
++ } |
|
1120 |
++ |
|
1121 |
++ buffer = (const char *) buffer + add; |
|
1122 |
++ len -= add; |
|
1123 |
++ } |
|
1124 |
++ |
|
1125 |
++ /* Process available complete blocks. */ |
|
1126 |
++ if (len >= 64) { |
|
1127 |
++/* To check alignment gcc has an appropriate operator. Other |
|
1128 |
++compilers don't. */ |
|
1129 |
++#if __GNUC__ >= 2 |
|
1130 |
++# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0) |
|
1131 |
++#else |
|
1132 |
++# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0) |
|
1133 |
++#endif |
|
1134 |
++ if (UNALIGNED_P (buffer)) |
|
1135 |
++ while (len > 64) { |
|
1136 |
++ sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx); |
|
1137 |
++ buffer = (const char *) buffer + 64; |
|
1138 |
++ len -= 64; |
|
1139 |
++ } else { |
|
1140 |
++ sha256_process_block(buffer, len & ~63, ctx); |
|
1141 |
++ buffer = (const char *) buffer + (len & ~63); |
|
1142 |
++ len &= 63; |
|
1143 |
++ } |
|
1144 |
++ } |
|
1145 |
++ |
|
1146 |
++ /* Move remaining bytes into internal buffer. */ |
|
1147 |
++ if (len > 0) { |
|
1148 |
++ size_t left_over = ctx->buflen; |
|
1149 |
++ |
|
1150 |
++ memcpy(&ctx->buffer[left_over], buffer, len); |
|
1151 |
++ left_over += len; |
|
1152 |
++ if (left_over >= 64) { |
|
1153 |
++ sha256_process_block(ctx->buffer, 64, ctx); |
|
1154 |
++ left_over -= 64; |
|
1155 |
++ memcpy(ctx->buffer, &ctx->buffer[64], left_over); |
|
1156 |
++ } |
|
1157 |
++ ctx->buflen = left_over; |
|
1158 |
++ } |
|
1159 |
++} |
|
1160 |
++ |
|
1161 |
++ |
|
1162 |
++/* Define our magic string to mark salt for SHA256 "encryption" |
|
1163 |
++ replacement. */ |
|
1164 |
++static const char sha256_salt_prefix[] = "$5$"; |
|
1165 |
++ |
|
1166 |
++/* Prefix for optional rounds specification. */ |
|
1167 |
++static const char sha256_rounds_prefix[] = "rounds="; |
|
1168 |
++ |
|
1169 |
++/* Maximum salt string length. */ |
|
1170 |
++#define SALT_LEN_MAX 16 |
|
1171 |
++/* Default number of rounds if not explicitly specified. */ |
|
1172 |
++#define ROUNDS_DEFAULT 5000 |
|
1173 |
++/* Minimum number of rounds. */ |
|
1174 |
++#define ROUNDS_MIN 1000 |
|
1175 |
++/* Maximum number of rounds. */ |
|
1176 |
++#define ROUNDS_MAX 999999999 |
|
1177 |
++ |
|
1178 |
++/* Table with characters for base64 transformation. */ |
|
1179 |
++static const char b64t[64] = |
|
1180 |
++"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
|
1181 |
++ |
|
1182 |
++char * php_sha256_crypt_r(const char *key, const char *salt, char *buffer, int buflen) |
|
1183 |
++{ |
|
1184 |
++#ifdef PHP_WIN32 |
|
1185 |
++ __declspec(align(32)) unsigned char alt_result[32]; |
|
1186 |
++ __declspec(align(32)) unsigned char temp_result[32]; |
|
1187 |
++#else |
|
1188 |
++ unsigned char alt_result[32] |
|
1189 |
++ __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); |
|
1190 |
++ unsigned char temp_result[32] |
|
1191 |
++ __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); |
|
1192 |
++#endif |
|
1193 |
++ |
|
1194 |
++ struct sha256_ctx ctx; |
|
1195 |
++ struct sha256_ctx alt_ctx; |
|
1196 |
++ size_t salt_len; |
|
1197 |
++ size_t key_len; |
|
1198 |
++ size_t cnt; |
|
1199 |
++ char *cp; |
|
1200 |
++ char *copied_key = NULL; |
|
1201 |
++ char *copied_salt = NULL; |
|
1202 |
++ char *p_bytes; |
|
1203 |
++ char *s_bytes; |
|
1204 |
++ /* Default number of rounds. */ |
|
1205 |
++ size_t rounds = ROUNDS_DEFAULT; |
|
1206 |
++ bool rounds_custom = false; |
|
1207 |
++ |
|
1208 |
++ /* Find beginning of salt string. The prefix should normally always |
|
1209 |
++ be present. Just in case it is not. */ |
|
1210 |
++ if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) { |
|
1211 |
++ /* Skip salt prefix. */ |
|
1212 |
++ salt += sizeof(sha256_salt_prefix) - 1; |
|
1213 |
++ } |
|
1214 |
++ |
|
1215 |
++ if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) == 0) { |
|
1216 |
++ const char *num = salt + sizeof(sha256_rounds_prefix) - 1; |
|
1217 |
++ char *endp; |
|
1218 |
++ unsigned long int srounds = strtoul(num, &endp, 10); |
|
1219 |
++ if (*endp == '$') { |
|
1220 |
++ salt = endp + 1; |
|
1221 |
++ rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); |
|
1222 |
++ rounds_custom = true; |
|
1223 |
++ } |
|
1224 |
++ } |
|
1225 |
++ |
|
1226 |
++ salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); |
|
1227 |
++ key_len = strlen(key); |
|
1228 |
++ |
|
1229 |
++ if ((key - (char *) 0) % __alignof__ (uint32_t) != 0) { |
|
1230 |
++ char *tmp = (char *) alloca(key_len + __alignof__(uint32_t)); |
|
1231 |
++ key = copied_key = memcpy(tmp + __alignof__(uint32_t) - (tmp - (char *) 0) % __alignof__(uint32_t), key, key_len); |
|
1232 |
++ } |
|
1233 |
++ |
|
1234 |
++ if ((salt - (char *) 0) % __alignof__(uint32_t) != 0) { |
|
1235 |
++ char *tmp = (char *) alloca(salt_len + __alignof__(uint32_t)); |
|
1236 |
++ salt = copied_salt = |
|
1237 |
++ memcpy(tmp + __alignof__(uint32_t) - (tmp - (char *) 0) % __alignof__ (uint32_t), salt, salt_len); |
|
1238 |
++ } |
|
1239 |
++ |
|
1240 |
++ /* Prepare for the real work. */ |
|
1241 |
++ sha256_init_ctx(&ctx); |
|
1242 |
++ |
|
1243 |
++ /* Add the key string. */ |
|
1244 |
++ sha256_process_bytes(key, key_len, &ctx); |
|
1245 |
++ |
|
1246 |
++ /* The last part is the salt string. This must be at most 16 |
|
1247 |
++ characters and it ends at the first `$' character (for |
|
1248 |
++ compatibility with existing implementations). */ |
|
1249 |
++ sha256_process_bytes(salt, salt_len, &ctx); |
|
1250 |
++ |
|
1251 |
++ |
|
1252 |
++ /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The |
|
1253 |
++ final result will be added to the first context. */ |
|
1254 |
++ sha256_init_ctx(&alt_ctx); |
|
1255 |
++ |
|
1256 |
++ /* Add key. */ |
|
1257 |
++ sha256_process_bytes(key, key_len, &alt_ctx); |
|
1258 |
++ |
|
1259 |
++ /* Add salt. */ |
|
1260 |
++ sha256_process_bytes(salt, salt_len, &alt_ctx); |
|
1261 |
++ |
|
1262 |
++ /* Add key again. */ |
|
1263 |
++ sha256_process_bytes(key, key_len, &alt_ctx); |
|
1264 |
++ |
|
1265 |
++ /* Now get result of this (32 bytes) and add it to the other |
|
1266 |
++ context. */ |
|
1267 |
++ sha256_finish_ctx(&alt_ctx, alt_result); |
|
1268 |
++ |
|
1269 |
++ /* Add for any character in the key one byte of the alternate sum. */ |
|
1270 |
++ for (cnt = key_len; cnt > 32; cnt -= 32) { |
|
1271 |
++ sha256_process_bytes(alt_result, 32, &ctx); |
|
1272 |
++ } |
|
1273 |
++ sha256_process_bytes(alt_result, cnt, &ctx); |
|
1274 |
++ |
|
1275 |
++ /* Take the binary representation of the length of the key and for every |
|
1276 |
++ 1 add the alternate sum, for every 0 the key. */ |
|
1277 |
++ for (cnt = key_len; cnt > 0; cnt >>= 1) { |
|
1278 |
++ if ((cnt & 1) != 0) { |
|
1279 |
++ sha256_process_bytes(alt_result, 32, &ctx); |
|
1280 |
++ } else { |
|
1281 |
++ sha256_process_bytes(key, key_len, &ctx); |
|
1282 |
++ } |
|
1283 |
++ } |
|
1284 |
++ |
|
1285 |
++ /* Create intermediate result. */ |
|
1286 |
++ sha256_finish_ctx(&ctx, alt_result); |
|
1287 |
++ |
|
1288 |
++ /* Start computation of P byte sequence. */ |
|
1289 |
++ sha256_init_ctx(&alt_ctx); |
|
1290 |
++ |
|
1291 |
++ /* For every character in the password add the entire password. */ |
|
1292 |
++ for (cnt = 0; cnt < key_len; ++cnt) { |
|
1293 |
++ sha256_process_bytes(key, key_len, &alt_ctx); |
|
1294 |
++ } |
|
1295 |
++ |
|
1296 |
++ /* Finish the digest. */ |
|
1297 |
++ sha256_finish_ctx(&alt_ctx, temp_result); |
|
1298 |
++ |
|
1299 |
++ /* Create byte sequence P. */ |
|
1300 |
++ cp = p_bytes = alloca(key_len); |
|
1301 |
++ for (cnt = key_len; cnt >= 32; cnt -= 32) { |
|
1302 |
++ cp = mempcpy((void *)cp, (const void *)temp_result, 32); |
|
1303 |
++ } |
|
1304 |
++ memcpy(cp, temp_result, cnt); |
|
1305 |
++ |
|
1306 |
++ /* Start computation of S byte sequence. */ |
|
1307 |
++ sha256_init_ctx(&alt_ctx); |
|
1308 |
++ |
|
1309 |
++ /* For every character in the password add the entire password. */ |
|
1310 |
++ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) { |
|
1311 |
++ sha256_process_bytes(salt, salt_len, &alt_ctx); |
|
1312 |
++ } |
|
1313 |
++ |
|
1314 |
++ /* Finish the digest. */ |
|
1315 |
++ sha256_finish_ctx(&alt_ctx, temp_result); |
|
1316 |
++ |
|
1317 |
++ /* Create byte sequence S. */ |
|
1318 |
++ cp = s_bytes = alloca(salt_len); |
|
1319 |
++ for (cnt = salt_len; cnt >= 32; cnt -= 32) { |
|
1320 |
++ cp = mempcpy(cp, temp_result, 32); |
|
1321 |
++ } |
|
1322 |
++ memcpy(cp, temp_result, cnt); |
|
1323 |
++ |
|
1324 |
++ /* Repeatedly run the collected hash value through SHA256 to burn |
|
1325 |
++ CPU cycles. */ |
|
1326 |
++ for (cnt = 0; cnt < rounds; ++cnt) { |
|
1327 |
++ /* New context. */ |
|
1328 |
++ sha256_init_ctx(&ctx); |
|
1329 |
++ |
|
1330 |
++ /* Add key or last result. */ |
|
1331 |
++ if ((cnt & 1) != 0) { |
|
1332 |
++ sha256_process_bytes(p_bytes, key_len, &ctx); |
|
1333 |
++ } else { |
|
1334 |
++ sha256_process_bytes(alt_result, 32, &ctx); |
|
1335 |
++ } |
|
1336 |
++ |
|
1337 |
++ /* Add salt for numbers not divisible by 3. */ |
|
1338 |
++ if (cnt % 3 != 0) { |
|
1339 |
++ sha256_process_bytes(s_bytes, salt_len, &ctx); |
|
1340 |
++ } |
|
1341 |
++ |
|
1342 |
++ /* Add key for numbers not divisible by 7. */ |
|
1343 |
++ if (cnt % 7 != 0) { |
|
1344 |
++ sha256_process_bytes(p_bytes, key_len, &ctx); |
|
1345 |
++ } |
|
1346 |
++ |
|
1347 |
++ /* Add key or last result. */ |
|
1348 |
++ if ((cnt & 1) != 0) { |
|
1349 |
++ sha256_process_bytes(alt_result, 32, &ctx); |
|
1350 |
++ } else { |
|
1351 |
++ sha256_process_bytes(p_bytes, key_len, &ctx); |
|
1352 |
++ } |
|
1353 |
++ |
|
1354 |
++ /* Create intermediate result. */ |
|
1355 |
++ sha256_finish_ctx(&ctx, alt_result); |
|
1356 |
++ } |
|
1357 |
++ |
|
1358 |
++ /* Now we can construct the result string. It consists of three |
|
1359 |
++ parts. */ |
|
1360 |
++ cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen)); |
|
1361 |
++ buflen -= sizeof(sha256_salt_prefix) - 1; |
|
1362 |
++ |
|
1363 |
++ if (rounds_custom) { |
|
1364 |
++#ifdef PHP_WIN32 |
|
1365 |
++ int n = _snprintf(cp, MAX(0, buflen), "%s%u$", sha256_rounds_prefix, rounds); |
|
1366 |
++#else |
|
1367 |
++ int n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha256_rounds_prefix, rounds); |
|
1368 |
++#endif |
|
1369 |
++ cp += n; |
|
1370 |
++ buflen -= n; |
|
1371 |
++ } |
|
1372 |
++ |
|
1373 |
++ cp = stpncpy(cp, salt, MIN ((size_t) MAX (0, buflen), salt_len)); |
|
1374 |
++ buflen -= MIN((size_t) MAX (0, buflen), salt_len); |
|
1375 |
++ |
|
1376 |
++ if (buflen > 0) { |
|
1377 |
++ *cp++ = '$'; |
|
1378 |
++ --buflen; |
|
1379 |
++ } |
|
1380 |
++ |
|
1381 |
++#define b64_from_24bit(B2, B1, B0, N) \ |
|
1382 |
++ do { \ |
|
1383 |
++ unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ |
|
1384 |
++ int n = (N); \ |
|
1385 |
++ while (n-- > 0 && buflen > 0) \ |
|
1386 |
++ { \ |
|
1387 |
++ *cp++ = b64t[w & 0x3f]; \ |
|
1388 |
++ --buflen; \ |
|
1389 |
++ w >>= 6; \ |
|
1390 |
++ } \ |
|
1391 |
++ } while (0) |
|
1392 |
++ |
|
1393 |
++ b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4); |
|
1394 |
++ b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4); |
|
1395 |
++ b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4); |
|
1396 |
++ b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4); |
|
1397 |
++ b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4); |
|
1398 |
++ b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4); |
|
1399 |
++ b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4); |
|
1400 |
++ b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4); |
|
1401 |
++ b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4); |
|
1402 |
++ b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4); |
|
1403 |
++ b64_from_24bit(0, alt_result[31], alt_result[30], 3); |
|
1404 |
++ if (buflen <= 0) { |
|
1405 |
++ errno = ERANGE; |
|
1406 |
++ buffer = NULL; |
|
1407 |
++ } else |
|
1408 |
++ *cp = '\0'; /* Terminate the string. */ |
|
1409 |
++ |
|
1410 |
++ /* Clear the buffer for the intermediate result so that people |
|
1411 |
++ attaching to processes or reading core dumps cannot get any |
|
1412 |
++ information. We do it in this way to clear correct_words[] |
|
1413 |
++ inside the SHA256 implementation as well. */ |
|
1414 |
++ sha256_init_ctx(&ctx); |
|
1415 |
++ sha256_finish_ctx(&ctx, alt_result); |
|
1416 |
++ memset(temp_result, '\0', sizeof(temp_result)); |
|
1417 |
++ memset(p_bytes, '\0', key_len); |
|
1418 |
++ memset(s_bytes, '\0', salt_len); |
|
1419 |
++ memset(&ctx, '\0', sizeof(ctx)); |
|
1420 |
++ memset(&alt_ctx, '\0', sizeof(alt_ctx)); |
|
1421 |
++ |
|
1422 |
++ if (copied_key != NULL) { |
|
1423 |
++ memset(copied_key, '\0', key_len); |
|
1424 |
++ |
|
1425 |
++ } |
|
1426 |
++ if (copied_salt != NULL) { |
|
1427 |
++ memset(copied_salt, '\0', salt_len); |
|
1428 |
++ } |
|
1429 |
++ |
|
1430 |
++ return buffer; |
|
1431 |
++} |
|
1432 |
++ |
|
1433 |
++ |
|
1434 |
++/* This entry point is equivalent to the `crypt' function in Unix |
|
1435 |
++ libcs. */ |
|
1436 |
++char * php_sha256_crypt(const char *key, const char *salt) |
|
1437 |
++{ |
|
1438 |
++ /* We don't want to have an arbitrary limit in the size of the |
|
1439 |
++ password. We can compute an upper bound for the size of the |
|
1440 |
++ result in advance and so we can prepare the buffer we pass to |
|
1441 |
++ `sha256_crypt_r'. */ |
|
1442 |
++ static char *buffer; |
|
1443 |
++ static int buflen; |
|
1444 |
++ int needed = (sizeof(sha256_salt_prefix) - 1 |
|
1445 |
++ + sizeof(sha256_rounds_prefix) + 9 + 1 |
|
1446 |
++ + strlen(salt) + 1 + 43 + 1); |
|
1447 |
++ |
|
1448 |
++ if (buflen < needed) { |
|
1449 |
++ char *new_buffer = (char *) realloc(buffer, needed); |
|
1450 |
++ if (new_buffer == NULL) { |
|
1451 |
++ return NULL; |
|
1452 |
++ } |
|
1453 |
++ |
|
1454 |
++ buffer = new_buffer; |
|
1455 |
++ buflen = needed; |
|
1456 |
++ } |
|
1457 |
++ |
|
1458 |
++ return php_sha256_crypt_r(key, salt, buffer, buflen); |
|
1459 |
++} |
|
1460 |
++ |
|
1461 |
++ |
|
1462 |
++#ifdef TEST |
|
1463 |
++static const struct |
|
1464 |
++{ |
|
1465 |
++ const char *input; |
|
1466 |
++ const char result[32]; |
|
1467 |
++} tests[] = |
|
1468 |
++ { |
|
1469 |
++ /* Test vectors from FIPS 180-2: appendix B.1. */ |
|
1470 |
++ { "abc", |
|
1471 |
++ "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" |
|
1472 |
++ "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" }, |
|
1473 |
++ /* Test vectors from FIPS 180-2: appendix B.2. */ |
|
1474 |
++ { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
|
1475 |
++ "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" |
|
1476 |
++ "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, |
|
1477 |
++ /* Test vectors from the NESSIE project. */ |
|
1478 |
++ { "", |
|
1479 |
++ "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24" |
|
1480 |
++ "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55" }, |
|
1481 |
++ { "a", |
|
1482 |
++ "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d" |
|
1483 |
++ "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb" }, |
|
1484 |
++ { "message digest", |
|
1485 |
++ "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad" |
|
1486 |
++ "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50" }, |
|
1487 |
++ { "abcdefghijklmnopqrstuvwxyz", |
|
1488 |
++ "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52" |
|
1489 |
++ "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73" }, |
|
1490 |
++ { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
|
1491 |
++ "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" |
|
1492 |
++ "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, |
|
1493 |
++ { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", |
|
1494 |
++ "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80" |
|
1495 |
++ "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0" }, |
|
1496 |
++ { "123456789012345678901234567890123456789012345678901234567890" |
|
1497 |
++ "12345678901234567890", |
|
1498 |
++ "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e" |
|
1499 |
++ "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e" } |
|
1500 |
++ }; |
|
1501 |
++#define ntests (sizeof (tests) / sizeof (tests[0])) |
|
1502 |
++ |
|
1503 |
++ |
|
1504 |
++static const struct |
|
1505 |
++{ |
|
1506 |
++ const char *salt; |
|
1507 |
++ const char *input; |
|
1508 |
++ const char *expected; |
|
1509 |
++} tests2[] = |
|
1510 |
++{ |
|
1511 |
++ { "$5$saltstring", "Hello world!", |
|
1512 |
++ "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" }, |
|
1513 |
++ { "$5$rounds=10000$saltstringsaltstring", "Hello world!", |
|
1514 |
++ "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2." |
|
1515 |
++ "opqey6IcA" }, |
|
1516 |
++ { "$5$rounds=5000$toolongsaltstring", "This is just a test", |
|
1517 |
++ "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8" |
|
1518 |
++ "mGRcvxa5" }, |
|
1519 |
++ { "$5$rounds=1400$anotherlongsaltstring", |
|
1520 |
++ "a very much longer text to encrypt. This one even stretches over more" |
|
1521 |
++ "than one line.", |
|
1522 |
++ "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12" |
|
1523 |
++ "oP84Bnq1" }, |
|
1524 |
++ { "$5$rounds=77777$short", |
|
1525 |
++ "we have a short salt string but not a short password", |
|
1526 |
++ "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" }, |
|
1527 |
++ { "$5$rounds=123456$asaltof16chars..", "a short string", |
|
1528 |
++ "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/" |
|
1529 |
++ "cZKmF/wJvD" }, |
|
1530 |
++ { "$5$rounds=10$roundstoolow", "the minimum number is still observed", |
|
1531 |
++ "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97" |
|
1532 |
++ "2bIC" }, |
|
1533 |
++}; |
|
1534 |
++#define ntests2 (sizeof (tests2) / sizeof (tests2[0])) |
|
1535 |
++ |
|
1536 |
++ |
|
1537 |
++int main(void) { |
|
1538 |
++ struct sha256_ctx ctx; |
|
1539 |
++ char sum[32]; |
|
1540 |
++ int result = 0; |
|
1541 |
++ int cnt, i; |
|
1542 |
++ char buf[1000]; |
|
1543 |
++ static const char expected[32] = |
|
1544 |
++ "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" |
|
1545 |
++ "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0"; |
|
1546 |
++ |
|
1547 |
++ for (cnt = 0; cnt < (int) ntests; ++cnt) { |
|
1548 |
++ sha256_init_ctx(&ctx); |
|
1549 |
++ sha256_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx); |
|
1550 |
++ sha256_finish_ctx(&ctx, sum); |
|
1551 |
++ if (memcmp(tests[cnt].result, sum, 32) != 0) { |
|
1552 |
++ printf("test %d run %d failed\n", cnt, 1); |
|
1553 |
++ result = 1; |
|
1554 |
++ } |
|
1555 |
++ |
|
1556 |
++ sha256_init_ctx(&ctx); |
|
1557 |
++ for (i = 0; tests[cnt].input[i] != '\0'; ++i) { |
|
1558 |
++ sha256_process_bytes(&tests[cnt].input[i], 1, &ctx); |
|
1559 |
++ } |
|
1560 |
++ sha256_finish_ctx(&ctx, sum); |
|
1561 |
++ if (memcmp(tests[cnt].result, sum, 32) != 0) { |
|
1562 |
++ printf("test %d run %d failed\n", cnt, 2); |
|
1563 |
++ result = 1; |
|
1564 |
++ } |
|
1565 |
++ } |
|
1566 |
++ |
|
1567 |
++ /* Test vector from FIPS 180-2: appendix B.3. */ |
|
1568 |
++ |
|
1569 |
++ memset(buf, 'a', sizeof(buf)); |
|
1570 |
++ sha256_init_ctx(&ctx); |
|
1571 |
++ for (i = 0; i < 1000; ++i) { |
|
1572 |
++ sha256_process_bytes (buf, sizeof (buf), &ctx); |
|
1573 |
++ } |
|
1574 |
++ |
|
1575 |
++ sha256_finish_ctx(&ctx, sum); |
|
1576 |
++ |
|
1577 |
++ if (memcmp(expected, sum, 32) != 0) { |
|
1578 |
++ printf("test %d failed\n", cnt); |
|
1579 |
++ result = 1; |
|
1580 |
++ } |
|
1581 |
++ |
|
1582 |
++ for (cnt = 0; cnt < ntests2; ++cnt) { |
|
1583 |
++ char *cp = php_sha256_crypt(tests2[cnt].input, tests2[cnt].salt); |
|
1584 |
++ if (strcmp(cp, tests2[cnt].expected) != 0) { |
|
1585 |
++ printf("test %d: expected \"%s\", got \"%s\"\n", cnt, tests2[cnt].expected, cp); |
|
1586 |
++ result = 1; |
|
1587 |
++ } |
|
1588 |
++ } |
|
1589 |
++ |
|
1590 |
++ if (result == 0) |
|
1591 |
++ puts("all tests OK"); |
|
1592 |
++ |
|
1593 |
++ return result; |
|
1594 |
++} |
|
1595 |
++#endif |
|
1596 |
+Index: ext/standard/config.w32 |
|
1597 |
+=================================================================== |
|
1598 |
+--- ext/standard/config.w32 (Revision 291898) |
|
1599 |
++++ ext/standard/config.w32 (Revision 291899) |
|
1600 |
+@@ -9,8 +9,8 @@ |
|
1601 |
+ CHECK_HEADER_ADD_INCLUDE("timelib_config.h", "CFLAGS_STANDARD", "ext/date/lib"); |
|
1602 |
+ |
|
1603 |
+ EXTENSION("standard", "array.c base64.c basic_functions.c browscap.c \ |
|
1604 |
+- crc32.c crypt.c \ |
|
1605 |
+- crypt_freesec.c crypt_blowfish.c php_crypt_r.c \ |
|
1606 |
++ crc32.c crypt.c crypt_freesec.c crypt_blowfish.c crypt_sha256.c \ |
|
1607 |
++ crypt_sha512.c php_crypt_r.c \ |
|
1608 |
+ cyr_convert.c datetime.c dir.c dl.c dns.c dns_win32.c exec.c \ |
|
1609 |
+ file.c filestat.c formatted_print.c fsock.c head.c html.c image.c \ |
|
1610 |
+ info.c iptc.c lcg.c link_win32.c mail.c math.c md5.c metaphone.c microtime.c \ |
|
1611 |
+Index: ext/standard/php_crypt_r.h |
|
1612 |
+=================================================================== |
|
1613 |
+--- ext/standard/php_crypt_r.h (Revision 291898) |
|
1614 |
++++ ext/standard/php_crypt_r.h (Revision 291899) |
|
1615 |
+@@ -49,6 +49,8 @@ |
|
1616 |
+ extern char * php_md5_crypt_r(const char *pw, const char *salt, char *out); |
|
1617 |
+ extern char * php_crypt_blowfish_rn(__CONST char *key, __CONST char *setting, |
|
1618 |
+ char *output, int size); |
|
1619 |
++extern char * php_sha512_crypt_r (const char *key, const char *salt, char *buffer, int buflen); |
|
1620 |
++extern char * php_sha256_crypt_r (const char *key, const char *salt, char *buffer, int buflen); |
|
1621 |
+ |
|
1622 |
+ #ifdef __cplusplus |
|
1623 |
+ } |
|
1624 |
+Index: ext/standard/crypt.c |
|
1625 |
+=================================================================== |
|
1626 |
+--- ext/standard/crypt.c (Revision 291898) |
|
1627 |
++++ ext/standard/crypt.c (Revision 291899) |
|
1628 |
+@@ -82,6 +82,12 @@ |
|
1629 |
+ #define PHP_MAX_SALT_LEN 60 |
|
1630 |
+ #endif |
|
1631 |
+ |
|
1632 |
++#if PHP_SHA512_CRYPT |
|
1633 |
++#undef PHP_MAX_SALT_LEN |
|
1634 |
++#define PHP_MAX_SALT_LEN 123 |
|
1635 |
++#endif |
|
1636 |
++ |
|
1637 |
++ |
|
1638 |
+ /* If the configure-time checks fail, we provide DES. |
|
1639 |
+ * XXX: This is a hack. Fix the real problem! */ |
|
1640 |
+ |
|
1641 |
+@@ -163,6 +169,7 @@ |
|
1642 |
+ php_to64(&salt[0], PHP_CRYPT_RAND, 2); |
|
1643 |
+ salt[2] = '\0'; |
|
1644 |
+ #endif |
|
1645 |
++ salt_in_len = strlen(salt); |
|
1646 |
+ } |
|
1647 |
+ |
|
1648 |
+ /* Windows (win32/crypt) has a stripped down version of libxcrypt and |
|
1649 |
+@@ -175,7 +182,36 @@ |
|
1650 |
+ char output[MD5_HASH_MAX_LEN]; |
|
1651 |
+ |
|
1652 |
+ RETURN_STRING(php_md5_crypt_r(str, salt, output), 1); |
|
1653 |
+- } else if ( |
|
1654 |
++ } else if (salt[0]=='$' && salt[1]=='6' && salt[2]=='$') { |
|
1655 |
++ const char sha512_salt_prefix[] = "$6$"; |
|
1656 |
++ const char sha512_rounds_prefix[] = "rounds="; |
|
1657 |
++ char *output; |
|
1658 |
++ int needed = (sizeof(sha512_salt_prefix) - 1 |
|
1659 |
++ + sizeof(sha512_rounds_prefix) + 9 + 1 |
|
1660 |
++ + strlen(salt) + 1 + 43 + 1); |
|
1661 |
++ output = emalloc(needed * sizeof(char *)); |
|
1662 |
++ salt[salt_in_len] = '\0'; |
|
1663 |
++ |
|
1664 |
++ php_sha512_crypt_r(str, salt, output, needed); |
|
1665 |
++ |
|
1666 |
++ RETVAL_STRING(output, 1); |
|
1667 |
++ memset(output, 0, PHP_MAX_SALT_LEN + 1); |
|
1668 |
++ efree(output); |
|
1669 |
++ } else if (salt[0]=='$' && salt[1]=='5' && salt[2]=='$') { |
|
1670 |
++ const char sha256_salt_prefix[] = "$5$"; |
|
1671 |
++ const char sha256_rounds_prefix[] = "rounds="; |
|
1672 |
++ char *output; |
|
1673 |
++ int needed = (sizeof(sha256_salt_prefix) - 1 |
|
1674 |
++ + sizeof(sha256_rounds_prefix) + 9 + 1 |
|
1675 |
++ + strlen(salt) + 1 + 43 + 1); |
|
1676 |
++ output = emalloc(needed * sizeof(char *)); |
|
1677 |
++ salt[salt_in_len] = '\0'; |
|
1678 |
++ php_sha256_crypt_r(str, salt, output, needed); |
|
1679 |
++ |
|
1680 |
++ RETVAL_STRING(output, 1); |
|
1681 |
++ memset(output, 0, PHP_MAX_SALT_LEN + 1); |
|
1682 |
++ efree(output); |
|
1683 |
++ } else if ( |
|
1684 |
+ salt[0] == '$' && |
|
1685 |
+ salt[1] == '2' && |
|
1686 |
+ salt[2] == 'a' && |
|
1687 |
+Index: ext/standard/config.m4 |
|
1688 |
+=================================================================== |
|
1689 |
+--- ext/standard/config.m4 (Revision 291898) |
|
1690 |
++++ ext/standard/config.m4 (Revision 291899) |
|
1691 |
+@@ -172,6 +172,65 @@ |
|
1692 |
+ ac_cv_crypt_blowfish=no |
|
1693 |
+ ])]) |
|
1694 |
+ |
|
1695 |
++AC_CACHE_CHECK(for SHA512 crypt, ac_cv_crypt_SHA512,[ |
|
1696 |
++AC_TRY_RUN([ |
|
1697 |
++#if HAVE_UNISTD_H |
|
1698 |
++#include <unistd.h> |
|
1699 |
++#endif |
|
1700 |
++ |
|
1701 |
++#if HAVE_CRYPT_H |
|
1702 |
++#include <crypt.h> |
|
1703 |
++#endif |
|
1704 |
++ |
|
1705 |
++main() { |
|
1706 |
++#if HAVE_CRYPT |
|
1707 |
++ char salt[30], answer[80]; |
|
1708 |
++ |
|
1709 |
++ salt[0]='$'; salt[1]='6'; salt[2]='$'; salt[3]='$'; salt[4]='b'; salt[5]='a'; salt[6]='r'; salt[7]='\0'; |
|
1710 |
++ strcpy(answer, salt); |
|
1711 |
++ strcpy(&answer[29],"$6$$QMXjqd7rHQZPQ1yHsXkQqC1FBzDiVfTHXL.LaeDAeVV.IzMaV9VU4MQ8kPuZa2SOP1A0RPm772EaFYjpEJtdu."); |
|
1712 |
++ exit (strcmp((char *)crypt("foo",salt),answer)); |
|
1713 |
++#else |
|
1714 |
++ exit(0); |
|
1715 |
++#endif |
|
1716 |
++}],[ |
|
1717 |
++ ac_cv_crypt_SHA512=yes |
|
1718 |
++],[ |
|
1719 |
++ ac_cv_crypt_SHA512=no |
|
1720 |
++],[ |
|
1721 |
++ ac_cv_crypt_SHA512=no |
|
1722 |
++])]) |
|
1723 |
++ |
|
1724 |
++AC_CACHE_CHECK(for SHA256 crypt, ac_cv_crypt_SHA256,[ |
|
1725 |
++AC_TRY_RUN([ |
|
1726 |
++#if HAVE_UNISTD_H |
|
1727 |
++#include <unistd.h> |
|
1728 |
++#endif |
|
1729 |
++ |
|
1730 |
++#if HAVE_CRYPT_H |
|
1731 |
++#include <crypt.h> |
|
1732 |
++#endif |
|
1733 |
++ |
|
1734 |
++main() { |
|
1735 |
++#if HAVE_CRYPT |
|
1736 |
++ char salt[30], answer[80]; |
|
1737 |
++ salt[0]='$'; salt[1]='5'; salt[2]='$'; salt[3]='$'; salt[4]='s'; salt[5]='a'; salt[6]='l'; salt[7]='t'; salt[8]='s'; salt[9]='t'; salt[10]='r'; salt[11]='i'; salt[12]='n'; salt[13]='g'; salt[14]='\0'; |
|
1738 |
++ strcat(salt,""); |
|
1739 |
++ strcpy(answer, salt); |
|
1740 |
++ strcpy(&answer[29], "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"); |
|
1741 |
++ exit (strcmp((char *)crypt("foo",salt),answer)); |
|
1742 |
++#else |
|
1743 |
++ exit(0); |
|
1744 |
++#endif |
|
1745 |
++}],[ |
|
1746 |
++ ac_cv_crypt_SHA256=yes |
|
1747 |
++],[ |
|
1748 |
++ ac_cv_crypt_SHA256=no |
|
1749 |
++],[ |
|
1750 |
++ ac_cv_crypt_SHA256=no |
|
1751 |
++])]) |
|
1752 |
++ |
|
1753 |
++ |
|
1754 |
+ dnl |
|
1755 |
+ dnl If one of them is missing, use our own implementation, portable code is then possible |
|
1756 |
+ dnl |
|
1757 |
+@@ -181,8 +240,10 @@ |
|
1758 |
+ AC_DEFINE_UNQUOTED(PHP_BLOWFISH_CRYPT, 1, [Whether the system supports BlowFish salt]) |
|
1759 |
+ AC_DEFINE_UNQUOTED(PHP_EXT_DES_CRYPT, 1, [Whether the system supports extended DES salt]) |
|
1760 |
+ AC_DEFINE_UNQUOTED(PHP_MD5_CRYPT, 1, [Whether the system supports extended DES salt]) |
|
1761 |
++ AC_DEFINE_UNQUOTED(PHP_SHA512_CRYPT, 1, [Whether the system supports SHA512 salt]) |
|
1762 |
++ AC_DEFINE_UNQUOTED(PHP_SHA256_CRYPT, 1, [Whether the system supports SHA256 salt]) |
|
1763 |
+ |
|
1764 |
+- PHP_ADD_SOURCES(PHP_EXT_DIR(standard), crypt_freesec.c crypt_blowfish.c php_crypt_r.c) |
|
1765 |
++ PHP_ADD_SOURCES(PHP_EXT_DIR(standard), crypt_freesec.c crypt_blowfish.c crypt_sha512.c crypt_sha256.c php_crypt_r.c) |
|
1766 |
+ else |
|
1767 |
+ if test "$ac_cv_crypt_des" = "yes"; then |
|
1768 |
+ ac_result=1 |
|
1769 |
+@@ -211,13 +272,31 @@ |
|
1770 |
+ fi |
|
1771 |
+ AC_DEFINE_UNQUOTED(PHP_EXT_DES_CRYPT, $ac_result, [Whether the system supports extended DES salt]) |
|
1772 |
+ |
|
1773 |
++ if test "$ac_cv_crypt_sha512" = "yes"; then |
|
1774 |
++ ac_result=1 |
|
1775 |
++ ac_crypt_sha512=1 |
|
1776 |
++ else |
|
1777 |
++ ac_result=0 |
|
1778 |
++ ac_crypt_sha512=0 |
|
1779 |
++ fi |
|
1780 |
++ AC_DEFINE_UNQUOTED(PHP_EXT_SHA512_CRYPT, $ac_result, [Whether the system supports SHA512 salt]) |
|
1781 |
++ |
|
1782 |
++ if test "$ac_cv_crypt_sha256" = "yes"; then |
|
1783 |
++ ac_result=1 |
|
1784 |
++ ac_crypt_sha256=1 |
|
1785 |
++ else |
|
1786 |
++ ac_result=0 |
|
1787 |
++ ac_crypt_sha256=0 |
|
1788 |
++ fi |
|
1789 |
++ AC_DEFINE_UNQUOTED(PHP_EXT_SHA256_CRYPT, $ac_result, [Whether the system supports SHA256 salt]) |
|
1790 |
++ |
|
1791 |
+ AC_DEFINE_UNQUOTED(PHP_USE_PHP_CRYPT_R, 0, [Whether PHP has to use its own crypt_r for blowfish, des and ext des]) |
|
1792 |
+ fi |
|
1793 |
+ |
|
1794 |
+ dnl |
|
1795 |
+ dnl Check for available functions |
|
1796 |
+ dnl |
|
1797 |
+-AC_CHECK_FUNCS(getcwd getwd asinh acosh atanh log1p hypot glob strfmon nice fpclass isinf isnan) |
|
1798 |
++AC_CHECK_FUNCS(getcwd getwd asinh acosh atanh log1p hypot glob strfmon nice fpclass isinf isnan mempcpy strpncpy) |
|
1799 |
+ AC_FUNC_FNMATCH |
|
1800 |
+ |
|
1801 |
+ divert(5)dnl |