git.schokokeks.org
Repositories
Help
Report an Issue
tor-webwml.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
84deb8861
Branches
Tags
bridges
docs-debian
jobs
master
press-clips
tor-webwml.git
en
volunteer.wml
explain why we need a rewrite
Roger Dingledine
commited
84deb8861
at 2010-03-18 01:04:29
volunteer.wml
Blame
History
Raw
## translation metadata # Revision: $Revision$ # Translation-Priority: 4-optional #include "head.wmi" TITLE="Tor: Volunteer" CHARSET="UTF-8" <div class="main-column"> <!-- PUT CONTENT AFTER THIS TAG --> <h2>A few things everyone can do now:</h2> <ol> <li>Please consider <a href="<page docs/tor-doc-relay>">running a relay</a> to help the Tor network grow.</li> <li>Tell your friends! Get them to run relays. Get them to run hidden services. Get them to tell their friends.</li> <li>If you like Tor's goals, please <a href="<page donate>">take a moment to donate to support further Tor development</a>. We're also looking for more sponsors — if you know any companies, NGOs, agencies, or other organizations that want anonymity / privacy / communications security, let them know about us.</li> <li>We're looking for more <a href="<page torusers>">good examples of Tor users and Tor use cases</a>. If you use Tor for a scenario or purpose not yet described on that page, and you're comfortable sharing it with us, we'd love to hear from you.</li> </ol> <p>Tor has <a href="<page open-positions>">two open positions</a>. Please <a href="<page contact>">contact us</a> if you are qualified!</p> <a id="Documentation"></a> <h2><a class="anchor" href="#Documentation">Documentation</a></h2> <ol> <li>Help translate the web page and documentation into other languages. See the <a href="<page translation>">translation guidelines</a> if you want to help out. We especially need Arabic or Farsi translations, for the many Tor users in censored areas.</li> <li>Evaluate and document <a href="https://wiki.torproject.org/wiki/TheOnionRouter/TorifyHOWTO">our list of programs</a> that can be configured to use Tor.</li> <li>We have a huge list of <a href="https://wiki.torproject.org/noreply/TheOnionRouter/SupportPrograms">potentially useful programs that interface to Tor</a>. Which ones are useful in which situations? Please help us test them out and document your results.</li> </ol> <a id="Advocacy"></a> <h2><a class="anchor" href="#Advocacy">Advocacy</a></h2> <ol> <li>Create a <a href="https://wiki.torproject.org/noreply/CommunityLogos">community logo</a> under a Creative Commons license that all can use and modify</li> <li>Create a presentation that can be used for various user group meetings around the world</li> <li>Create a video about the positive uses of Tor, what Tor is, or how to use it. Some have already started on <a href="http://media.torproject.org/video/">Tor's Media server</a>, <a href="http://www.howcast.com/videos/90601-How-To-Circumvent-an-Internet-Proxy">Howcast</a>, and <a href="http://www.youtube.com/freedom4internet">Youtube</a>.</li> <li>Create a poster, or a set of posters, around a theme, such as "Tor for Freedom!"</li> </ol> <a id="Coding"></a> <a id="Summer"></a> <a id="Projects"></a> <h2><a class="anchor" href="#Projects">Good Coding Projects</a></h2> <p> You may find some of these projects to be good <a href="<page gsoc>">Google Summer of Code 2010</a> ideas. We have labelled each idea with how useful it would be to the overall Tor project (priority), how much work we expect it would be (effort level), how much clue you should start with (skill level), and which of our <a href="<page people>#Core">core developers</a> would be good mentors. If one or more of these ideas looks promising to you, please <a href="<page contact>">contact us</a> to discuss your plans rather than sending blind applications. You may also want to propose your own project idea — which often results in the best applications. </p> <ol> <li> <b>Tor Browser Bundle for Linux/Mac OS X</b> <br /> Priority: <i>High</i> <br /> Effort Level: <i>High</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>Steven, Erinn, Jacob, Andrew</i> <br /> The Tor Browser Bundle incorporates Tor, Firefox, Polipo, and the Vidalia user interface (and optionally the <a href="http://pidgin.im/">Pidgin</a> Instant Messaging client). Components are pre-configured to operate in a secure way, and it has very few dependencies on the installed operating system. It has therefore become one of the most easy to use, and popular, ways to use Tor on Windows. <br /> However, there is currently no released package for Linux and Mac OS X, so this project would be to implement Tor Browser Bundle for OS X and continue work on the Tor Browser Bundle for Linux. This will involve modifications to Vidalia (C++), possibly Firefox (C) then creating and testing the launcher on a range of operating system versions and configurations to verify portability. Some work on this was completed as part of the Google Summer of Code 2009. Another part of this project is to identify all of the traces left behind by using a Tor Browser Bundle on Mac OS X or Linux. Developing ways to stop, counter, or remove these traces is a final step. <br /> Students should be familiar with application development on one or preferably both of Linux and Mac OS X, and be comfortable with C/C++ and shell scripting. <br /> Part of this project could be usability testing of Tor Browser Bundle, ideally amongst our target demographic. That would help a lot in knowing what needs to be done in terms of bug fixes or new features. We get this informally at the moment, but a more structured process would be better. </li> <li> <b>Help track the overall Tor Network status</b> <br /> Priority: <i>Medium to High</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>Karsten, Roger</i> <br /> It would be great to set up an automated system for tracking network health over time, graphing it, etc. Part of this project would involve inventing better metrics for assessing network health and growth. Is the average uptime of the network increasing? How many relays are qualifying for Guard status this month compared to last month? What's the turnover in terms of new relays showing up and relays shutting off? Periodically people collect brief snapshots, but where it gets really interesting is when we start tracking data points over time. <br /> Data could be collected from the Tor Network Scanners in <a href="https://svn.torproject.org/svn/torflow/trunk/README">TorFlow</a>, from the server descriptors that each relay publishes, and from other sources. Results over time could be integrated into one of the <a href="https://torstatus.blutmagie.de/">Tor Status</a> web pages, or be kept separate. Speaking of the Tor Status pages, take a look at Roger's <a href="http://archives.seul.org/or/talk/Jan-2008/msg00300.html">Tor Status wish list</a>. </li> <li> <b>Rewrite TorDNSEL, this time with a spec!</b> <br /> Priority: <i>High</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>Mike, Roger, Sebastian</i> <br /> The <a href="<page tordnsel/index>">Tor DNS Exit List</a> is an unmaintained Haskell program that serves three purposes. First, it provides an rbl-style DNS interface for people to look up whether a given IP address is (or has recently been) a Tor exit relay. Second, it actively builds circuits over the Tor network and connects back to itself, to learn the actual exit IP address of each relay — some Tor relays exit from a different address than they advertise in their descriptor. Third, it exports a <a href="http://exitlist.torproject.org/exitAddresses">set of conclusions</a> so that <a href="https://check.torproject.org/">check.torproject.org</a> can guess for you whether your browser is configured to point to Tor. <br /> This project would make use of <a href="https://svn.torproject.org/svn/torflow/trunk/README">TorFlow</a>, a set of Python scripts to interact with Tor; the project would be to figure out how our Tor Exit Checker should actually work, and then build it — probably in Python since Torflow is in Python. The main goal is to reduce false positives as much as possible, by making sure that it learns about new relays as soon as possible, making sure that the testing phase concludes quickly, and making sure the answers get passed to the Check script quickly. As a bonus, we should standardize (specify) the format of the exitAddresses file, and rewrite the <a href="https://svn.torproject.org/svn/check/trunk/cgi-bin/TorBulkExitList.py">Tor Bulk Exit List</a> script to use that file rather than its current horrible DNS hacks. <br /> You can fetch the <a href="git://git.torproject.org/git/tordnsel">latest tordnsel</a> via git. </li> <li> <b>Improving Tor's ability to resist censorship</b> <br /> Priority: <i>Medium to High</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>High</i> <br /> Likely Mentors: <i>Nick, Roger, Steven</i> <br /> The Tor 0.2.1.x series makes <a href="<gitblob>doc/design-paper/blocking.html">significant improvements</a> in resisting national and organizational censorship. But Tor still needs better mechanisms for some parts of its anti-censorship design. For example, current Tors can only listen on a single address/port combination at a time. There's <a href="<gitblob>doc/spec/proposals/118-multiple-orports.txt">a proposal to address this limitation</a> and allow clients to connect to any given Tor on multiple addresses and ports, but it needs more work. <br /> Another area that needs work is our <a href="http://gitweb.torproject.org//bridgedb.git?a=tree">bridgedb</a> service. See e.g. <a href="http://archives.seul.org/or/dev/Dec-2009/msg00000.html">Roger's or-dev post</a> from December for details — lots of design work remains. <br /> This project involves a lot of research and design. One of the big challenges will be identifying and crafting approaches that can still resist an adversary even after the adversary knows the design, and then trading off censorship resistance with usability and robustness. </li> <!--<li> <b>Tuneup Tor!</b> <br /> Priority: <i>Medium to High</i> <br /> Effort Level: <i>Medium to High</i> <br /> Skill Level: <i>High</i> <br /> Likely Mentors: <i>Nick, Roger, Mike, Karsten</i> <br /> Right now, Tor relays measure and report their own bandwidth, and Tor clients choose which relays to use in part based on that bandwidth. This approach is vulnerable to <a href="http://freehaven.net/anonbib/#bauer:wpes2007">attacks where relays lie about their bandwidth</a>; to address this, Tor currently caps the maximum bandwidth it's willing to believe any relay provides. This is a limited fix, and a waste of bandwidth capacity to boot. Instead, Tor should possibly measure bandwidth in a more distributed way, perhaps as described in the <a href="http://freehaven.net/anonbib/author.html#snader08">"A Tune-up for Tor"</a> paper by Snader and Borisov. One could use current testing code to double-check this paper's findings and verify the extent to which they dovetail with Tor as deployed in the wild, and determine good ways to incorporate them into their suggestions Tor network without adding too much communications overhead between relays and directory authorities. </li>--> <li> <b>Improving Polipo on Windows</b> <br /> Priority: <i>Medium to High</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>Chris</i> <br /> Help port <a href="http://www.pps.jussieu.fr/~jch/software/polipo/">Polipo</a> to Windows. Example topics to tackle include: <ol><li> the ability to asynchronously query name servers, find the system nameservers, and manage netbios and dns queries.</li> <li> manage events and buffers natively (i.e. in Unix-like OSes, Polipo defaults to 25% of ram, in Windows it's whatever the config specifies).</li> <li> some sort of GUI config and reporting tool, bonus if it has a systray icon with right clickable menu options. Double bonus if it's cross-platform compatible.</li> <li> allow the software to use the Windows Registry and handle proper Windows directory locations, such as "C:\Program Files\Polipo"</li> </ol> </li> <li> <b>Tor Controller Status Event Interface for Vidalia</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Low to Medium</i> <br /> Likely Mentors: <i>Matt</i> <br /> There are a number of status changes inside Tor of which the user may need to be informed. For example, if the user is trying to set up his Tor as a relay and Tor decides that its ports are not reachable from outside the user's network, we should alert the user. Currently, all the user gets is a couple log messages in Vidalia's 'message log' window, which they likely never see since they don't receive a notification that something has gone wrong. Even if the user does actually look at the message log, most of the messages make little sense to the novice user. <br /> Tor has the ability to inform Vidalia of many such status changes, and we recently implemented support for a couple of these events. Still, there are many more status events the user should be informed of and we need a better UI for actually displaying them to the user. <br /> The goal of this project then is to design and implement a UI for displaying Tor status events to the user. For example, we might put a little badge on Vidalia's tray icon that alerts the user to new status events they should look at. Double-clicking the icon could bring up a dialog that summarizes recent status events in simple terms and maybe suggests a remedy for any negative events if they can be corrected by the user. Of course, this is just an example and one is free to suggest another approach. <br /> A person undertaking this project should have good UI design and layout and some C++ development experience. Previous experience with Qt and Qt's Designer will be very helpful, but are not required. Some English writing ability will also be useful, since this project will likely involve writing small amounts of help documentation that should be understandable by non-technical users. Bonus points for some graphic design/Photoshop fu, since we might want/need some shiny new icons too. </li> <li> <b>Improve our unit testing process</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>Nick, Erinn</i> <br /> Tor needs to be far more tested. This is a multi-part effort. To start with, our unit test coverage should rise substantially, especially in the areas outside the utility functions. This will require significant refactoring of some parts of Tor, in order to dissociate as much logic as possible from globals. <br /> Additionally, we need to automate our performance testing. We've got buildbot to automate our regular integration and compile testing already (though we need somebody to set it up on Windows), but we need to get our network simulation tests (as built in <a href="https://svn.torproject.org/svn/torflow/trunk/README">TorFlow</a>) updated for more recent versions of Tor, and designed to launch a test network either on a single machine, or across several, so we can test changes in performance on machines in different roles automatically. </li> <li> <b>Help with independent Tor client implementations</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>High</i> <br /> Skill Level: <i>Medium to High</i> <br /> Likely Mentors: <i>Bruce, Nathan</i> <br /> Others are currently working on Tor clients for Java, Android, and Maemo environments. The first step is to get a handle on the current state of the project in which you are interested in helping; <a href="http://github.com/brl/JTor">Tor for Java</a>, <a href="https://svn.torproject.org/svn/projects/android/trunk/">Android/Orbot</a> , or Tor for Maemo. Check out the repository and familiarlize yourself with the source code. Further, support for requesting or even providing Tor hidden services would be neat, but not required. <br /> A prospective developer should be able to understand and write new Java code, including a Java cryptography API. Being able to read C code would be helpful, too. One should be willing to read the existing documentation, implement code based on it, and refine the documentation when things are underdocumented. This project is mostly about coding and to a small degree about design. </li> <!--<li> <b>New Torbutton Features</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>High</i> <br /> Skill Level: <i>High</i> <br /> Likely Mentors: <i>Mike</i> <br/> There are several <a href="https://bugs.torproject.org/flyspray/index.php?tasks=all&project=5&type=2">good feature requests</a> on the Torbutton Flyspray section. In particular, <a href="https://bugs.torproject.org/flyspray/index.php?do=details&id=523">Integrating 'New Identity' with Vidalia</a>, <a href="https://bugs.torproject.org/flyspray/index.php?do=details&id=940">ways of managing multiple cookie jars/identities</a>, <a href="https://bugs.torproject.org/flyspray/index.php?do=details&id=637">preserving specific cookies</a> when cookies are cleared, <a href="https://bugs.torproject.org/flyspray/index.php?do=details&id=524">better referrer spoofing</a>, <a href="https://bugs.torproject.org/flyspray/index.php?do=details&id=564">correct Tor status reporting</a>, and <a href="https://bugs.torproject.org/flyspray/index.php?do=details&id=462">"tor://" and "tors://" urls</a> are all interesting features that could be added. <br /> This work would be independent coding in Javascript and the fun world of <a href="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">XUL</a>, with not too much involvement in the Tor internals. </li>--> <!-- <li> <b>New Thandy Features</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium to High</i> <br /> Likely Mentors: <i>Martin</i> <br /> Additional capabilities are needed for assisted updates of all the Tor related software for Windows and other operating systems. Some of the features to consider include: <ol> <li> Integration of the <a href="http://chandlerproject.org/Projects/MeTooCrypto">MeTooCrypto Python library</a> for authenticated HTTPS downloads.</li> <li> Adding a level of indirection between the timestamp signatures and the package files included in an update. See the "Thandy attacks / suggestions" thread on or-dev.</li> <li> Support locale specific installation and configuration of assisted updates based on preference, host, or user account language settings. Familiarity with Windows codepages, unicode, and other character sets is helpful in addition to general win32 and posix API experience and Python proficiency.</li> </ol> </li> --> <li> <b>Simulator for slow Internet connections</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>Steven</i> <br /> Many users of Tor have poor-quality Internet connections, giving low bandwidth, high latency, and high packet loss/re-ordering. User experience is that Tor reacts badly to these conditions, but it is difficult to improve the situation without being able to repeat the problems in the lab. <br /> This project would be to build a simulation environment which replicates the poor connectivity so that the effect on Tor performance can be measured. Other components would be a testing utility to establish what are the properties of connections available, and to measure the effect of performance-improving modifications to Tor. <br /> The tools used would be up to the student, but dummynet (for FreeBSD) and nistnet (for Linux) are two potential components on which this project could be built. Students should be experienced with network programming/debugging and TCP/IP, and preferably familiar with C and a scripting language. </li> <li> <b>An Improved and More Usable Network Map in Vidalia</b> <br /> Priority: <i>Low to Medium</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>Matt</i> <br /> One of Vidalia's existing features is a network map that shows the user the approximate geographic location of relays in the Tor network and plots the paths the user's traffic takes as it is tunneled through the Tor network. The map is currently not very interactive and has rather poor graphics. Instead, we implemented KDE's Marble widget such that it gives us a better quality map and enables improved interactivity, such as allowing the user to click on individual relays or circuits to display additional information. We want to add the ability for users to click on a particular relay or a country containing one or more Tor exit relays and say, "I want my connections to exit from here." <br /> This project will first involve getting familiar with Vidalia and the Marble widget's API. One will then integrate the widget into Vidalia and customize Marble to be better suited for our application, such as making circuits clickable, storing cached map data in Vidalia's own data directory, and customizing some of the widget's dialogs. <br /> A person undertaking this project should have good C++ development experience. Previous experience with Qt and CMake is helpful, but not required. </li> <li> <b>Torbutton equivalent for Thunderbird</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>High</i> <br /> Skill Level: <i>High</i> <br /> Likely Mentors: <i>Mike</i> <br /> We're hearing from an increasing number of users that they want to use Thunderbird with Tor. However, there are plenty of application-level concerns, for example, by default Thunderbird will put your hostname in the outgoing mail that it sends. At some point we should start a new push to build a Thunderbird extension similar to Torbutton. </li> <!--<li> <b>Intermediate Level Network Device Driver</b> <br /> Priority: <i>Low</i> <br /> Effort Level: <i>High</i> <br /> Skill Level: <i>High</i> <br /> Likely Mentors: <i>Martin</i> <br /> The WinPCAP device driver used by Tor VM for bridged networking does not support a number of wireless and non-Ethernet network adapters. Implementation of a intermediate level network device driver for win32 and 64bit would provide a way to intercept and route traffic over such networks. This project will require knowledge of and experience with Windows kernel device driver development and testing. Familiarity with Winsock and Qemu would also be helpful. </li>--> <li> <b>Improve Tor Weather</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>Christian, Roger</i> <br /> <a href="https://weather.torproject.org/">Tor weather</a> is a tool that allows signing up to receive notifications via email when the tracked Tor relay is down. Currently, it isn't really useful for people who use the hibernation feature of Tor, or for those who have to shut down their relay regularly. During the project, Tor weather could be extended to allow more flexible configurations. Other enhancements are also possible: Weather could send out warnings when your relay runs an out-of-date version of Tor, or when its observed bandwith drops below a certain value. It might also be a nice tool that allows for checking whether your relay has earned you a <a href="<page tshirt>">T-Shirt</a>, or sending reminders to directory authorities that their keys are about to expire. Be creative, and consider how the above project to track overall network status can help you get your job done more quickly! See also its <a href="https://svn.torproject.org/svn/weather/trunk/README">README</a> and <a href="https://svn.torproject.org/svn/weather/trunk/TODO">TODO</a>. </li> <li> <b>Better Debian/Ubuntu Packaging for Tor+Vidalia</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>Erinn, Peter</i> <br /> Vidalia currently doesn't play nicely on Debian and Ubuntu with the default Tor packages. The current Tor packages automatically start Tor as a daemon running as the debian-tor user and (sensibly) do not have a <a href="<gitblob>doc/spec/control-spec.txt">ControlPort</a> defined in the default torrc. Consequently, Vidalia will try to start its own Tor process since it could not connect to the existing Tor, and Vidalia's Tor process will then exit with an error message the user likely doesn't understand since Tor cannot bind its listening ports — they're already in use by the original Tor daemon. <br /> The current solution involves either telling the user to stop the existing Tor daemon and let Vidalia start its own Tor process, or explaining to the user how to set a control port and password in their torrc. A better solution on Debian would be to use Tor's ControlSocket, which allows Vidalia to talk to Tor via a Unix domain socket, and could possibly be enabled by default in Tor's Debian packages. Vidalia can then authenticate to Tor using filesystem-based (cookie) authentication if the user running Vidalia is also in the debian-tor group. <br /> This project will first involve adding support for Tor's ControlSocket to Vidalia. The student will then develop and test Debian and Ubuntu packages for Vidalia that conform to Debian's packaging standards and make sure they work well with the existing Tor packages. We can also set up an apt repository to host the new Vidalia packages. <br /> The next challenge would be to find an intuitive usable way for Vidalia to be able to change Tor's configuration (torrc) even though it is located in <code>/etc/tor/torrc</code> and thus immutable. The best idea we've come up with so far is to feed Tor a new configuration via the ControlSocket when Vidalia starts, but that's bad because Tor starts each boot with a different configuration than the user wants. The second best idea we've come up with is for Vidalia to write out a temporary torrc file and ask the user to manually move it to <code>/etc/tor/torrc</code>, but that's bad because users shouldn't have to mess with files directly. <br /> A person undertaking this project should have prior knowledge of Debian package management and some C++ development experience. Previous experience with Qt is helpful, but not required. </li> <!--<li> <b>Tor/Polipo/Vidalia Auto-Update Framework</b> <br /> We're in need of a good authenticated-update framework. Vidalia already has the ability to notice when the user is running an outdated or unrecommended version of Tor, using signed statements inside the Tor directory information. Currently, Vidalia simply pops up a little message box that lets the user know they should manually upgrade. The goal of this project would be to extend Vidalia with the ability to also fetch and install the updated Tor software for the user. We should do the fetches via Tor when possible, but also fall back to direct fetches in a smart way. Time permitting, we would also like to be able to update other applications included in the bundled installers, such as Polipo and Vidalia itself. <br /> To complete this project, the student will first need to first investigate the existing auto-update frameworks (e.g., Sparkle on OS X) to evaluate their strengths, weaknesses, security properties, and ability to be integrated into Vidalia. If none are found to be suitable, the student will design their own auto-update framework, document the design, and then discuss the design with other developers to assess any security issues. The student will then implement their framework (or integrate an existing one) and test it. <br /> A person undertaking this project should have good C++ development experience. Previous experience with Qt is helpful, but not required. One should also have a good understanding of common security practices, such as package signature verification. Good writing ability is also important for this project, since a vital step of the project will be producing a design document to review and discuss with others prior to implementation. </li>--> <li> <b>Improving the Tor QA process: Continuous Integration for builds</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>Erinn</i> <br /> It would be useful to have automated build processes for Windows and probably other platforms. The purpose of having a continuous integration build environment is to ensure that Windows isn't left behind for any of the software projects used in the Tor project or its accompanying.<br /> Buildbot may be a good choice for this as it appears to support all of the platforms Tor does. See the <a href="http://en.wikipedia.org/wiki/BuildBot">wikipedia entry for buildbot</a>.<br /> There may be better options and the person undertaking this task should evaluate other options. Any person working on this automatic build process should have experience or be willing to learn how to build all of the respective Tor related code bases from scratch. Furthermore, the person should have some experience building software in Windows environments as this is the target audience we want to ensure we do not leave behind. It would require close work with the Tor source code but probably only in the form of building, not authoring.<br /> Additionally, we need to automate our performance testing for all platforms. We've got buildbot (except on Windows — as noted above) to automate our regular integration and compile testing already, but we need to get our network simulation tests (as built in torflow) updated for more recent versions of Tor, and designed to launch a test network either on a single machine, or across several, so we can test changes in performance on machines in different roles automatically. </li> <!--<li> <b>Usability testing of Tor</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Low to Medium</i> <br /> Likely Mentors: <i>Andrew</i> <br /> Especially the browser bundle, ideally amongst our target demographic. That would help a lot in knowing what needs to be done in terms of bug fixes or new features. We get this informally at the moment, but a more structured process would be better. </li>--> <li> <b>An authenticating IRC proxy</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>Medium to High</i> <br /> Skill Level: <i>Medium to High</i> <br /> Likely Mentors: <i>Sebastian, Weasel, Roger</i> <br /> The world needs an authenticating irc proxy. As we're periodically reminded from the Penny Arcade web comic, "Internet user + anonymity = jerk". With respect to websites we're actually doing ok, since websites can make their users log in and use other application-level authentication approaches. But IRC servers are much worse off, because most IRC server code is poorly written: hard to maintain, and harder to modify. Many IRC networks now block connections from Tor, and we're basically down to two holdouts (OFTC and Freenode). This state of affairs means that a lot of people around the world are thinking "I told you so" about anonymity online, when in fact the problem is simply lack of technology to make the problem manageable. We need some way to let the IRC networks distinguish which users have developed a reputation as not being jerks, so they can treat the two groups separately. There are some really cool research designs like <a href="http://www.cs.dartmouth.edu/~nymble/">Nymble</a>, which aim to let websites blacklist users without needing to learn who they are. But Nymble is designed around web interactions. We need to build the glue around the IRC protocol that would let us plug in a project like Nymble (or a simpler one to start, as a proof-of-concept). One way to do that would be to build an IRC proxy that knows how to hear from IRC clients, knows how to talk to IRC servers, and has an additional layer that requires the users to authenticate. </li> <li> <b>Make torsocks/dsocks work on OS X</b> <br /> Priority: <i>Medium</i> <br /> Effort Level: <i>Medium</i> <br /> Skill Level: <i>Medium</i> <br /> Likely Mentors: <i>?</i> <br /> <a href="http://code.google.com/p/torsocks/">Torsocks</a> and <a href="http://code.google.com/p/dsocks/">dsocks</a> are wrappers that will run applications, intercept their outgoing network connections, and push those connections through Tor. The goal is to handle applications that don't support proxies (or don't supporting them well). To get it right, they need to intercept many system calls. The syscalls you need to intercept on Linux differ dramatically from those on BSD. So Torsocks works fine on Linux, dsocks works ok on BSD (though it may be less maintained and thus might miss more syscalls), and nothing works well on both. First, we should patch dsocks to use Tor's <i>mapaddress</i> commands from the controller interface, so we don't waste a whole round-trip inside Tor doing the resolve before connecting. Second, we should make our <i>torify</i> script detect which of torsocks or dsocks is installed, and call them appropriately. This probably means unifying their interfaces, and might involve sharing code between them or discarding one entirely. </li> <li> <b>Bring up new ideas!</b> <br /> Don't like any of these? Look at the <a href="<gitblob>doc/roadmaps/2008-12-19-roadmap-full.pdf">Tor development roadmap</a> for more ideas, or just try out Tor, Vidalia, and Torbutton, and find out what you think needs fixing. Some of the <a href="<gittree>doc/spec/proposals">current proposals</a> might also be short on developers. </li> </ol> <a id="OtherCoding"></a> <h2><a class="anchor" href="#OtherCoding">Other Coding and Design related ideas</a></h2> <ol> <li>Tor relays don't work well on Windows XP. On Windows, Tor uses the standard <tt>select()</tt> system call, which uses space in the non-page pool. This means that a medium sized Tor relay will empty the non-page pool, <a href="https://wiki.torproject.org/noreply/TheOnionRouter/WindowsBufferProblems">causing havoc and system crashes</a>. We should probably be using overlapped IO instead. One solution would be to teach <a href="http://www.monkey.org/~provos/libevent/">libevent</a> how to use overlapped IO rather than select() on Windows, and then adapt Tor to the new libevent interface. Christian King made a <a href="https://svn.torproject.org/svn/libevent-urz/trunk/">good start</a> on this in the summer of 2007.</li> <li>We need to actually start building our <a href="<page documentation>#DesignDoc">blocking-resistance design</a>. This involves fleshing out the design, modifying many different pieces of Tor, adapting <a href="<page vidalia/index>">Vidalia</a> so it supports the new features, and planning for deployment.</li> <li>We need a flexible simulator framework for studying end-to-end traffic confirmation attacks. Many researchers have whipped up ad hoc simulators to support their intuition either that the attacks work really well or that some defense works great. Can we build a simulator that's clearly documented and open enough that everybody knows it's giving a reasonable answer? This will spur a lot of new research. See the entry <a href="#Research">below</a> on confirmation attacks for details on the research side of this task — who knows, when it's done maybe you can help write a paper or three also.</li> <li>Tor 0.1.1.x and later include support for hardware crypto accelerators via OpenSSL. It has been lightly tested and is possibly very buggy. We're looking for more rigorous testing, performance analysis, and optimally, code fixes to openssl and Tor if needed.</li> <li>Perform a security analysis of Tor with <a href="http://en.wikipedia.org/wiki/Fuzz_testing">"fuzz"</a>. Determine if there are good fuzzing libraries out there for what we want. Win fame by getting credit when we put out a new release because of you!</li> <li>Tor uses TCP for transport and TLS for link encryption. This is nice and simple, but it means all cells on a link are delayed when a single packet gets dropped, and it means we can only reasonably support TCP streams. We have a <a href="https://wiki.torproject.org/noreply/TheOnionRouter/TorFAQ#TransportIPnotTCP">list of reasons why we haven't shifted to UDP transport</a>, but it would be great to see that list get shorter. We also have a proposed <a href="<gitblob>doc/spec/proposals/100-tor-spec-udp.txt">specification for Tor and UDP</a> — please let us know what's wrong with it.</li> <li>We're not that far from having IPv6 support for destination addresses (at exit nodes). If you care strongly about IPv6, that's probably the first place to start.</li> <li>We need a way to generate the website diagrams (for example, the "How Tor Works" pictures on the <a href="<page overview>">overview page</a> from source, so we can translate them as UTF-8 text rather than edit them by hand with Gimp. We might want to integrate this as an wml file so translations are easy and images are generated in multiple languages whenever we build the website.</li> <li>How can we make the various LiveCD/USB systems easier to maintain, improve, and document? Some examples are <a href="http://amnesia.boum.org/">amnesia LiveCD/USB</a> and the <a href="http://anonymityanywhere.com/incognito/">Incognito LiveCD</a> </li> <li> Another anti-censorship project is to try to make Tor more scanning-resistant. Right now, an adversary can identify <a href="<gitblob>doc/spec/proposals/125-bridges.txt">Tor bridges</a> just by trying to connect to them, following the Tor protocol, and seeing if they respond. To solve this, bridges could <a href="<gitblob>doc/design-paper/blocking.html#tth_sEc9.3">act like webservers</a> (HTTP or HTTPS) when contacted by port-scanning tools, and not act like bridges until the user provides a bridge-specific key. To start, check out Shane Pope's <a href="http://dl.dropbox.com/u/37735/index.html">thesis and prototype</a>. </li> </ol> <a id="Research"></a> <h2><a class="anchor" href="#Research">Research</a></h2> <ol> <li>The "website fingerprinting attack": make a list of a few hundred popular websites, download their pages, and make a set of "signatures" for each site. Then observe a Tor client's traffic. As you watch him receive data, you quickly approach a guess about which (if any) of those sites he is visiting. First, how effective is this attack on the deployed Tor codebase? Then start exploring defenses: for example, we could change Tor's cell size from 512 bytes to 1024 bytes, we could employ padding techniques like <a href="http://freehaven.net/anonbib/#timing-fc2004">defensive dropping</a>, or we could add traffic delays. How much of an impact do these have, and how much usability impact (using some suitable metric) is there from a successful defense in each case?</li> <li>The "end-to-end traffic confirmation attack": by watching traffic at Alice and at Bob, we can <a href="http://freehaven.net/anonbib/#danezis:pet2004">compare traffic signatures and become convinced that we're watching the same stream</a>. So far Tor accepts this as a fact of life and assumes this attack is trivial in all cases. First of all, is that actually true? How much traffic of what sort of distribution is needed before the adversary is confident he has won? Are there scenarios (e.g. not transmitting much) that slow down the attack? Do some traffic padding or traffic shaping schemes work better than others?</li> <li>A related question is: Does running a relay/bridge provide additional protection against these timing attacks? Can an external adversary that can't see inside TLS links still recognize individual streams reliably? Does the amount of traffic carried degrade this ability any? What if the client-relay deliberately delayed upstream relayed traffic to create a queue that could be used to mimic timings of client downstream traffic to make it look like it was also relayed? This same queue could also be used for masking timings in client upstream traffic with the techniques from <a href="http://www.freehaven.net/anonbib/#ShWa-Timing06">adaptive padding</a>, but without the need for additional traffic. Would such an interleaving of client upstream traffic obscure timings for external adversaries? Would the strategies need to be adjusted for asymmetric links? For example, on asymmetric links, is it actually possible to differentiate client traffic from natural bursts due to their asymmetric capacity? Or is it easier than symmetric links for some other reason?</li> <li>Repeat Murdoch and Danezis's <a href="http://www.cl.cam.ac.uk/~sjm217/projects/anon/#torta">attack from Oakland 05</a> on the current Tor network. See if you can learn why it works well on some nodes and not well on others. (My theory is that the fast nodes with spare capacity resist the attack better.) If that's true, then experiment with the RelayBandwidthRate and RelayBandwidthBurst options to run a relay that is used as a client while relaying the attacker's traffic: as we crank down the RelayBandwidthRate, does the attack get harder? What's the right ratio of RelayBandwidthRate to actually capacity? Or is it a ratio at all? While we're at it, does a much larger set of candidate relays increase the false positive rate or other complexity for the attack? (The Tor network is now almost two orders of magnitude larger than it was when they wrote their paper.) Be sure to read <a href="http://freehaven.net/anonbib/#clog-the-queue">Don't Clog the Queue</a> too.</li> <li>The "routing zones attack": most of the literature thinks of the network path between Alice and her entry node (and between the exit node and Bob) as a single link on some graph. In practice, though, the path traverses many autonomous systems (ASes), and <a href="http://freehaven.net/anonbib/#feamster:wpes2004">it's not uncommon that the same AS appears on both the entry path and the exit path</a>. Unfortunately, to accurately predict whether a given Alice, entry, exit, Bob quad will be dangerous, we need to download an entire Internet routing zone and perform expensive operations on it. Are there practical approximations, such as avoiding IP addresses in the same /8 network?</li> <li>Other research questions regarding geographic diversity consider the tradeoff between choosing an efficient circuit and choosing a random circuit. Look at Stephen Rollyson's <a href="http://swiki.cc.gatech.edu:8080/ugResearch/uploads/7/ImprovingTor.pdf">position paper</a> on how to discard particularly slow choices without hurting anonymity "too much". This line of reasoning needs more work and more thinking, but it looks very promising.</li> <li>Tor doesn't work very well when relays have asymmetric bandwidth (e.g. cable or DSL). Because Tor has separate TCP connections between each hop, if the incoming bytes are arriving just fine and the outgoing bytes are all getting dropped on the floor, the TCP push-back mechanisms don't really transmit this information back to the incoming streams. Perhaps Tor should detect when it's dropping a lot of outgoing packets, and rate-limit incoming streams to regulate this itself? I can imagine a build-up and drop-off scheme where we pick a conservative rate-limit, slowly increase it until we get lost packets, back off, repeat. We need somebody who's good with networks to simulate this and help design solutions; and/or we need to understand the extent of the performance degradation, and use this as motivation to reconsider UDP transport.</li> <li>A related topic is congestion control. Is our current design sufficient once we have heavy use? Maybe we should experiment with variable-sized windows rather than fixed-size windows? That seemed to go well in an <a href="http://www.psc.edu/networking/projects/hpn-ssh/theory.php">ssh throughput experiment</a>. We'll need to measure and tweak, and maybe overhaul if the results are good.</li> <li>Our censorship-resistance goals include preventing an attacker who's looking at Tor traffic on the wire from <a href="<gitblob>doc/design-paper/blocking.html#sec:network-fingerprint">distinguishing it from normal SSL traffic</a>. Obviously we can't achieve perfect steganography and still remain usable, but for a first step we'd like to block any attacks that can win by observing only a few packets. One of the remaining attacks we haven't examined much is that Tor cells are 512 bytes, so the traffic on the wire may well be a multiple of 512 bytes. How much does the batching and overhead in TLS records blur this on the wire? Do different buffer flushing strategies in Tor affect this? Could a bit of padding help a lot, or is this an attack we must accept?</li> <li>Tor circuits are built one hop at a time, so in theory we have the ability to make some streams exit from the second hop, some from the third, and so on. This seems nice because it breaks up the set of exiting streams that a given relay can see. But if we want each stream to be safe, the "shortest" path should be at least 3 hops long by our current logic, so the rest will be even longer. We need to examine this performance / security tradeoff.</li> <li>It's not that hard to DoS Tor relays or directory authorities. Are client puzzles the right answer? What other practical approaches are there? Bonus if they're backward-compatible with the current Tor protocol.</li> <li>Programs like <a href="<page torbutton/index>">Torbutton</a> aim to hide your browser's UserAgent string by replacing it with a uniform answer for every Tor user. That way the attacker can't splinter Tor's anonymity set by looking at that header. It tries to pick a string that is commonly used by non-Tor users too, so it doesn't stand out. Question one: how badly do we hurt ourselves by periodically updating the version of Firefox that Torbutton claims to be? If we update it too often, we splinter the anonymity sets ourselves. If we don't update it often enough, then all the Tor users stand out because they claim to be running a quite old version of Firefox. The answer here probably depends on the Firefox versions seen in the wild. Question two: periodically people ask us to cycle through N UserAgent strings rather than stick with one. Does this approach help, hurt, or not matter? Consider: cookies and recognizing Torbutton users by their rotating UserAgents; malicious websites who only attack certain browsers; and whether the answers to question one impact this answer. </li> <li>Right now Tor clients are willing to reuse a given circuit for ten minutes after it's first used. The goal is to avoid loading down the network with too many circuit extend operations, yet to also avoid having clients use the same circuit for so long that the exit node can build a useful pseudonymous profile of them. Alas, ten minutes is probably way too long, especially if connections from multiple protocols (e.g. IM and web browsing) are put on the same circuit. If we keep fixed the overall number of circuit extends that the network needs to do, are there more efficient and/or safer ways for clients to allocate streams to circuits, or for clients to build preemptive circuits? Perhaps this research item needs to start with gathering some traces of what connections typical clients try to launch, so you have something realistic to try to optimize. </li> <li>How many bridge relays do you need to know to maintain reachability? We should measure the churn in our bridges. If there is lots of churn, are there ways to keep bridge users more likely to stay connected? </li> </ol> <p> <a href="<page contact>">Let us know</a> if you've made progress on any of these! </p> </div><!-- #main --> #include <foot.wmi>