
 

Torbutton and Firefox

Mike Perry
Mozilla Brown Bag
Jun 22, 2010



 

Topics For Today

1. Torbutton's Adversary Model and Requirements

2. Torbutton Functional Overview and Demo

3. Torbutton Architecture & Major Components

4. Comparison to Firefox 3.6 Private Browsing

5. Current Firefox Bugs Impacting Tor Security

6. Awkward XPCOM Interfaces and Inconsistencies

7. Interfaces that would be really, really helpful



 

Adversary Goals

1. Bypassing proxy settings

2. Correlation of Tor vs Non-Tor

3. History disclosure

4. Location information

5. Misc Anonymity set reduction (Fingerprinting)

6. History records and other on-disk information



 

Adversary Capabilities (Positioning)

● Can modify content at exit node or its router
● Can insert malicious content into ads or websites 

they control
– Can target Tor enabled as well as Tor disabled states

● Can insert malicious content into non-Tor traffic 
– At user's local network, ISP, or other upstream router

● Can seize computers of Tor Users



 

Adversary Capabilities (Attacks)

● Can insert javascript into content
– Attribute-based history disclosure

– Timezone information, Fingerprinting

– Browser Exploits

● Can insert CSS into content
– JS-free attribute-based history disclosure

● Can insert plugins into content
– Proxy bypass, alternate identifier storage

● Can read and insert cookies
● Can create cached content (unique identifiers)



 

Torbutton Requirements

1. Proxy Obedience – Obey Tor settings

2. Network Isolation – Don't mix Tor+Non-Tor

3. State Separation – Keep cookies, cache separate

4. Tor Undiscoverability – Hidden while Tor is off

5. Disk Avoidance – Don't write Tor state to disk

6. Location Neutrality – Don't reveal location

7. Anonymity Set Preservation – Mask User Agent

8. Update Safety – No insecure updates via Tor

9. Interoperability – Don't break other extensions



 

Major Torbutton Functionality (1)

● Disable plugins while Tor is enabled
– docShell.allowPlugins

● Isolate dynamic content per Tor load state
– docShell.allowJavascript

– nsIContentPolicy

● Cookie jars/cookie clearing
– Component based on code from Colin Jackson

● Cache management
– Cache prefs and clearing on toggle

● Prevent Livemark updates



 

Major Torbutton Functionality (2)

● History management
– global-history;2  and nav-history-service;1 hooking

– Prevent both CSS and JS attacks + history recording

● Tor-specific warning before launching apps
– Hook external-[helper-app/protocol]-service;1

● User agent+locale spoofing
● Timezone spoofing

– Store+set the TZ environment variable

● Session Store Blocking in Tor mode
– Re-register custom copy of nsSessionStore.js



 

TorButton Demo

● https://www.torproject.org/torbutton/design/#SingleStateTesting
● http://ha.ckers.org/weird/CSS-history.cgi
● http://www.tjkdesign.com/articles/css%20pop%20ups/5.asp

https://www.torproject.org/torbutton/design/#SingleStateTesting
http://ha.ckers.org/weird/CSS-history.cgi
http://www.tjkdesign.com/articles/css%20pop%20ups/5.asp


 

Torbutton Architecture

● Browser overlay
– Tab tags, plugins, Javascript hooks

● XPCOM contract hooking
– Register a new class-id that implements a contracted 

component with one or more interfaces

– Copies uninteresting members and methods

– Doesn't work if components are referenced by class-id

● Additional Components
– Cookie Jar handler

– Map for content windows -> tabs

– Content Policy



 

Browser Overlay

● Per window observers
– Recieves notification via 'tor_enabled' pref if Tor state 

changes
● Updates UI elements accordingly

● “Master Window” observers
– 'unload' notification to transfer control on close

– Receives notification if proxy settings change
● Updates browser prefs and Torbutton settings accordingly

– Receives notification if any Torbutton prefs change

– Tab tags and Javascript hooks deployed from a 
docloaderservice;1 listener



 

Unprivileged Javascript Hooks

● Deployed from a docloaderservice;1 weblistener
– Needs to receive event before content JS runs, but 

after window object is built.

● calls evalInSandbox with 
contentWindow.wrappedJSObject as the sandbox

● Currently only used for window.screen
● Can be unmasked in FF3.0+, need alternatives



 

Hooked Components

● @mozilla.org/browser/global-history;2
– Hooks isVisited to lie to Gecko about visted status

– Hooks addURI to prevent disk writes during Tor

● @mozilla.org/browser/sessionstore;1
– Modified nsSessionStore.js to prevent disk writes

● @mozilla.org/browser/sessionstartup;1
– Used for notification of crashes via doRestore()

– Also doubles as an app-startup observer for Torbutton

● @mozilla.org/browser/external-protocol-service;1
– Warns on external app launch (Firefox fails to do so)



 

Additional Components

● @stanford.edu/cookie-jar-selector;2
– Sends 'shutdown-cleanse' profile change messages to 

the cookiemanager

– Writes out current state's cookies, loads new state's

● @torproject.org/content-window-mapper;1
– Searches all windows for tabbedbrowser that owns a 

content window and caches the result

● @torproject.org/cssblocker;1
– Obtains the contentWindow from node param and 

uses window mapper to obtain tabbrowser

– Checks tab tag against current state for allow/deny



 

Firefox Private Browsing Mode

● Subset of Torbutton Requirements
– Not concerned with proxies, anonymity set, location

● Anonymity set issues lead to fingerprinting
● Users can still be tracked via plugins
● Form fill is a problem
● HTML5 protocol handlers a problem
● Certificates+SSL Session Ids are a problem
● DNS prefetching+livemarks a potential problem
● External apps/protocols may be a problem



 

PBM vs Torbutton

● Torbutton more flexible in allowing the user to 
persist state if they want

● This is mainly because of the “Toggle-Model”
– Google Incognito “Window-Model” may be superior

– This is also why we build Tor Browser Bundle

– PBM tab save+restore model dodges a lot of issues 

● Torbutton has anti-fingerprinting measures
● PBM handles/clears: clipboard, permission 

manager, the SDR, and error console



 

Combining FF PBM with Torbutton

● Primarily of interest so that other addons know to 
be private.

● Want to preserve Torbutton's options...
● Wrap nsIObserver::observe to block “private-

browsing” emit for:
– nsCookieService

– nsNavHistory

– NsSessionStore

● Also need to emit an exit followed by an enter if 
Tor enabled for startup.



 

PBM+Torbutton Integration Issues

● Several components directly query the Private 
Browsing Service, instead of tracking the emits.
– This makes fine-tuning behavior difficult

● In particular:
– Form-fill history cannot be enabled via above hacks

– History UI is altered. Cannot delete items.

– Passwords can't be stored

– Content-type prefs can't be saved

● Clean way to preserve DOM storage?
– APIs are not developed enough



 

Firefox Bugs Impacting Tor

● nsNSSCertificateDB::DeleteCertificate has race 
conditions (Bug 435159)

● Timezone config/hookable JS Date() (Bugs 
419598+392274)

● docShell.allowJavascript does not kill all event 
handlers (Bug 409737)

● docShell.allowPlugins not honored for direct links 
(Bug 401296, 282106?)

● Others:
– https://www.torproject.org/torbutton/design/#FirefoxBugs



 

Awkward Firefox Interfaces

● Lack of context in nsIConentPolicy, 
nsIWebListener, and nsIProtocolProxyFilter
– contentWindow vs tab.. What browser am I in?

– “getMostRecentWindow” has race conditions and 
getBrowser() not available from components

● Components.classes & interfaces exposed to 
content JS. Why? Bug? Allows fingerprinting..

● Some components are called only by Class ID
● Some interfaces not suitable for augmentation by 

hooking



 

Interface Wishlist

● Scriptable nsIPluginManager::register/unregister
● Better scriptable DOM Storage APIs
● More fine-grained nsISessionStore interface
● 'app-crash-recover' event before session restore
● Scriptable control over OOP plugin system calls

– Or force network IO through proxy settings!

● nsIProxyInfo member of tabbrowser to allow per-
tab proxying

● Scriptable hooks for to window.screen and Date



 

“What can I do to help Tor?”

● Expose PBM + anti-fingerprinting work as components

– Torbutton needs finer-grained control

● Help fix Tor-related Firefox bugs!
– https://www.torproject.org/torbutton/design/#FirefoxBugs

● Extra bandwidth? Run a node! 
– See Tor source contrib directory for Linux 'tc' 

prioritization script

– No need to impact your own traffic flows

https://www.torproject.org/torbutton/design/#FirefoxBugs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

