git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
2095645
Branches
Tags
master
SVMCrossVal.git
libsvm-mat-2.88-1
svm.cpp
SVMCrossVal toolbox init
Christoph Budziszewski
commited
2095645
at 2008-12-17 13:45:29
svm.cpp
Blame
History
Raw
#include <math.h> #include <stdio.h> #include <stdlib.h> #include <ctype.h> #include <float.h> #include <string.h> #include <stdarg.h> #include "svm.h" typedef float Qfloat; typedef signed char schar; #ifndef min template <class T> inline T min(T x,T y) { return (x<y)?x:y; } #endif #ifndef max template <class T> inline T max(T x,T y) { return (x>y)?x:y; } #endif template <class T> inline void swap(T& x, T& y) { T t=x; x=y; y=t; } template <class S, class T> inline void clone(T*& dst, S* src, int n) { dst = new T[n]; memcpy((void *)dst,(void *)src,sizeof(T)*n); } inline double powi(double base, int times) { double tmp = base, ret = 1.0; for(int t=times; t>0; t/=2) { if(t%2==1) ret*=tmp; tmp = tmp * tmp; } return ret; } #define INF HUGE_VAL #define TAU 1e-12 #define Malloc(type,n) (type *)malloc((n)*sizeof(type)) #if 1 static void info(const char *fmt,...) { va_list ap; va_start(ap,fmt); vprintf(fmt,ap); va_end(ap); } static void info_flush() { fflush(stdout); } #else static void info(char *fmt,...) {} static void info_flush() {} #endif // // Kernel Cache // // l is the number of total data items // size is the cache size limit in bytes // class Cache { public: Cache(int l,long int size); ~Cache(); // request data [0,len) // return some position p where [p,len) need to be filled // (p >= len if nothing needs to be filled) int get_data(const int index, Qfloat **data, int len); void swap_index(int i, int j); private: int l; long int size; struct head_t { head_t *prev, *next; // a circular list Qfloat *data; int len; // data[0,len) is cached in this entry }; head_t *head; head_t lru_head; void lru_delete(head_t *h); void lru_insert(head_t *h); }; Cache::Cache(int l_,long int size_):l(l_),size(size_) { head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0 size /= sizeof(Qfloat); size -= l * sizeof(head_t) / sizeof(Qfloat); size = max(size, 2 * (long int) l); // cache must be large enough for two columns lru_head.next = lru_head.prev = &lru_head; } Cache::~Cache() { for(head_t *h = lru_head.next; h != &lru_head; h=h->next) free(h->data); free(head); } void Cache::lru_delete(head_t *h) { // delete from current location h->prev->next = h->next; h->next->prev = h->prev; } void Cache::lru_insert(head_t *h) { // insert to last position h->next = &lru_head; h->prev = lru_head.prev; h->prev->next = h; h->next->prev = h; } int Cache::get_data(const int index, Qfloat **data, int len) { head_t *h = &head[index]; if(h->len) lru_delete(h); int more = len - h->len; if(more > 0) { // free old space while(size < more) { head_t *old = lru_head.next; lru_delete(old); free(old->data); size += old->len; old->data = 0; old->len = 0; } // allocate new space h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); size -= more; swap(h->len,len); } lru_insert(h); *data = h->data; return len; } void Cache::swap_index(int i, int j) { if(i==j) return; if(head[i].len) lru_delete(&head[i]); if(head[j].len) lru_delete(&head[j]); swap(head[i].data,head[j].data); swap(head[i].len,head[j].len); if(head[i].len) lru_insert(&head[i]); if(head[j].len) lru_insert(&head[j]); if(i>j) swap(i,j); for(head_t *h = lru_head.next; h!=&lru_head; h=h->next) { if(h->len > i) { if(h->len > j) swap(h->data[i],h->data[j]); else { // give up lru_delete(h); free(h->data); size += h->len; h->data = 0; h->len = 0; } } } } // // Kernel evaluation // // the static method k_function is for doing single kernel evaluation // the constructor of Kernel prepares to calculate the l*l kernel matrix // the member function get_Q is for getting one column from the Q Matrix // class QMatrix { public: virtual Qfloat *get_Q(int column, int len) const = 0; virtual Qfloat *get_QD() const = 0; virtual void swap_index(int i, int j) const = 0; virtual ~QMatrix() {} }; class Kernel: public QMatrix { public: Kernel(int l, svm_node * const * x, const svm_parameter& param); virtual ~Kernel(); static double k_function(const svm_node *x, const svm_node *y, const svm_parameter& param); virtual Qfloat *get_Q(int column, int len) const = 0; virtual Qfloat *get_QD() const = 0; virtual void swap_index(int i, int j) const // no so const... { swap(x[i],x[j]); if(x_square) swap(x_square[i],x_square[j]); } protected: double (Kernel::*kernel_function)(int i, int j) const; private: const svm_node **x; double *x_square; // svm_parameter const int kernel_type; const int degree; const double gamma; const double coef0; static double dot(const svm_node *px, const svm_node *py); double kernel_linear(int i, int j) const { return dot(x[i],x[j]); } double kernel_poly(int i, int j) const { return powi(gamma*dot(x[i],x[j])+coef0,degree); } double kernel_rbf(int i, int j) const { return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); } double kernel_sigmoid(int i, int j) const { return tanh(gamma*dot(x[i],x[j])+coef0); } double kernel_precomputed(int i, int j) const { return x[i][(int)(x[j][0].value)].value; } }; Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param) :kernel_type(param.kernel_type), degree(param.degree), gamma(param.gamma), coef0(param.coef0) { switch(kernel_type) { case LINEAR: kernel_function = &Kernel::kernel_linear; break; case POLY: kernel_function = &Kernel::kernel_poly; break; case RBF: kernel_function = &Kernel::kernel_rbf; break; case SIGMOID: kernel_function = &Kernel::kernel_sigmoid; break; case PRECOMPUTED: kernel_function = &Kernel::kernel_precomputed; break; } clone(x,x_,l); if(kernel_type == RBF) { x_square = new double[l]; for(int i=0;i<l;i++) x_square[i] = dot(x[i],x[i]); } else x_square = 0; } Kernel::~Kernel() { delete[] x; delete[] x_square; } double Kernel::dot(const svm_node *px, const svm_node *py) { double sum = 0; while(px->index != -1 && py->index != -1) { if(px->index == py->index) { sum += px->value * py->value; ++px; ++py; } else { if(px->index > py->index) ++py; else ++px; } } return sum; } double Kernel::k_function(const svm_node *x, const svm_node *y, const svm_parameter& param) { switch(param.kernel_type) { case LINEAR: return dot(x,y); case POLY: return powi(param.gamma*dot(x,y)+param.coef0,param.degree); case RBF: { double sum = 0; while(x->index != -1 && y->index !=-1) { if(x->index == y->index) { double d = x->value - y->value; sum += d*d; ++x; ++y; } else { if(x->index > y->index) { sum += y->value * y->value; ++y; } else { sum += x->value * x->value; ++x; } } } while(x->index != -1) { sum += x->value * x->value; ++x; } while(y->index != -1) { sum += y->value * y->value; ++y; } return exp(-param.gamma*sum); } case SIGMOID: return tanh(param.gamma*dot(x,y)+param.coef0); case PRECOMPUTED: //x: test (validation), y: SV return x[(int)(y->value)].value; default: return 0; // Unreachable } } // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 // Solves: // // min 0.5(\alpha^T Q \alpha) + p^T \alpha // // y^T \alpha = \delta // y_i = +1 or -1 // 0 <= alpha_i <= Cp for y_i = 1 // 0 <= alpha_i <= Cn for y_i = -1 // // Given: // // Q, p, y, Cp, Cn, and an initial feasible point \alpha // l is the size of vectors and matrices // eps is the stopping tolerance // // solution will be put in \alpha, objective value will be put in obj // class Solver { public: Solver() {}; virtual ~Solver() {}; struct SolutionInfo { double obj; double rho; double upper_bound_p; double upper_bound_n; double r; // for Solver_NU }; void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, double *alpha_, double Cp, double Cn, double eps, SolutionInfo* si, int shrinking); protected: int active_size; schar *y; double *G; // gradient of objective function enum { LOWER_BOUND, UPPER_BOUND, FREE }; char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE double *alpha; const QMatrix *Q; const Qfloat *QD; double eps; double Cp,Cn; double *p; int *active_set; double *G_bar; // gradient, if we treat free variables as 0 int l; bool unshrink; // XXX double get_C(int i) { return (y[i] > 0)? Cp : Cn; } void update_alpha_status(int i) { if(alpha[i] >= get_C(i)) alpha_status[i] = UPPER_BOUND; else if(alpha[i] <= 0) alpha_status[i] = LOWER_BOUND; else alpha_status[i] = FREE; } bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } bool is_free(int i) { return alpha_status[i] == FREE; } void swap_index(int i, int j); void reconstruct_gradient(); virtual int select_working_set(int &i, int &j); virtual double calculate_rho(); virtual void do_shrinking(); private: bool be_shrunk(int i, double Gmax1, double Gmax2); }; void Solver::swap_index(int i, int j) { Q->swap_index(i,j); swap(y[i],y[j]); swap(G[i],G[j]); swap(alpha_status[i],alpha_status[j]); swap(alpha[i],alpha[j]); swap(p[i],p[j]); swap(active_set[i],active_set[j]); swap(G_bar[i],G_bar[j]); } void Solver::reconstruct_gradient() { // reconstruct inactive elements of G from G_bar and free variables if(active_size == l) return; int i,j; int nr_free = 0; for(j=active_size;j<l;j++) G[j] = G_bar[j] + p[j]; for(j=0;j<active_size;j++) if(is_free(j)) nr_free++; if(2*nr_free < active_size) info("\nWarning: using -h 0 may be faster\n"); if (nr_free*l > 2*active_size*(l-active_size)) { for(i=active_size;i<l;i++) { const Qfloat *Q_i = Q->get_Q(i,active_size); for(j=0;j<active_size;j++) if(is_free(j)) G[i] += alpha[j] * Q_i[j]; } } else { for(i=0;i<active_size;i++) if(is_free(i)) { const Qfloat *Q_i = Q->get_Q(i,l); double alpha_i = alpha[i]; for(j=active_size;j<l;j++) G[j] += alpha_i * Q_i[j]; } } } void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, double *alpha_, double Cp, double Cn, double eps, SolutionInfo* si, int shrinking) { this->l = l; this->Q = &Q; QD=Q.get_QD(); clone(p, p_,l); clone(y, y_,l); clone(alpha,alpha_,l); this->Cp = Cp; this->Cn = Cn; this->eps = eps; unshrink = false; // initialize alpha_status { alpha_status = new char[l]; for(int i=0;i<l;i++) update_alpha_status(i); } // initialize active set (for shrinking) { active_set = new int[l]; for(int i=0;i<l;i++) active_set[i] = i; active_size = l; } // initialize gradient { G = new double[l]; G_bar = new double[l]; int i; for(i=0;i<l;i++) { G[i] = p[i]; G_bar[i] = 0; } for(i=0;i<l;i++) if(!is_lower_bound(i)) { const Qfloat *Q_i = Q.get_Q(i,l); double alpha_i = alpha[i]; int j; for(j=0;j<l;j++) G[j] += alpha_i*Q_i[j]; if(is_upper_bound(i)) for(j=0;j<l;j++) G_bar[j] += get_C(i) * Q_i[j]; } } // optimization step int iter = 0; int counter = min(l,1000)+1; while(1) { // show progress and do shrinking if(--counter == 0) { counter = min(l,1000); if(shrinking) do_shrinking(); info("."); info_flush(); } int i,j; if(select_working_set(i,j)!=0) { // reconstruct the whole gradient reconstruct_gradient(); // reset active set size and check active_size = l; info("*"); info_flush(); if(select_working_set(i,j)!=0) break; else counter = 1; // do shrinking next iteration } ++iter; // update alpha[i] and alpha[j], handle bounds carefully const Qfloat *Q_i = Q.get_Q(i,active_size); const Qfloat *Q_j = Q.get_Q(j,active_size); double C_i = get_C(i); double C_j = get_C(j); double old_alpha_i = alpha[i]; double old_alpha_j = alpha[j]; if(y[i]!=y[j]) { double quad_coef = Q_i[i]+Q_j[j]+2*Q_i[j]; if (quad_coef <= 0) quad_coef = TAU; double delta = (-G[i]-G[j])/quad_coef; double diff = alpha[i] - alpha[j]; alpha[i] += delta; alpha[j] += delta; if(diff > 0) { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = diff; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = -diff; } } if(diff > C_i - C_j) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = C_i - diff; } } else { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = C_j + diff; } } } else { double quad_coef = Q_i[i]+Q_j[j]-2*Q_i[j]; if (quad_coef <= 0) quad_coef = TAU; double delta = (G[i]-G[j])/quad_coef; double sum = alpha[i] + alpha[j]; alpha[i] -= delta; alpha[j] += delta; if(sum > C_i) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = sum - C_i; } } else { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = sum; } } if(sum > C_j) { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = sum - C_j; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = sum; } } } // update G double delta_alpha_i = alpha[i] - old_alpha_i; double delta_alpha_j = alpha[j] - old_alpha_j; for(int k=0;k<active_size;k++) { G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j; } // update alpha_status and G_bar { bool ui = is_upper_bound(i); bool uj = is_upper_bound(j); update_alpha_status(i); update_alpha_status(j); int k; if(ui != is_upper_bound(i)) { Q_i = Q.get_Q(i,l); if(ui) for(k=0;k<l;k++) G_bar[k] -= C_i * Q_i[k]; else for(k=0;k<l;k++) G_bar[k] += C_i * Q_i[k]; } if(uj != is_upper_bound(j)) { Q_j = Q.get_Q(j,l); if(uj) for(k=0;k<l;k++) G_bar[k] -= C_j * Q_j[k]; else for(k=0;k<l;k++) G_bar[k] += C_j * Q_j[k]; } } } // calculate rho si->rho = calculate_rho(); // calculate objective value { double v = 0; int i; for(i=0;i<l;i++) v += alpha[i] * (G[i] + p[i]); si->obj = v/2; } // put back the solution { for(int i=0;i<l;i++) alpha_[active_set[i]] = alpha[i]; } // juggle everything back /*{ for(int i=0;i<l;i++) while(active_set[i] != i) swap_index(i,active_set[i]); // or Q.swap_index(i,active_set[i]); }*/ si->upper_bound_p = Cp; si->upper_bound_n = Cn; info("\noptimization finished, #iter = %d\n",iter); delete[] p; delete[] y; delete[] alpha; delete[] alpha_status; delete[] active_set; delete[] G; delete[] G_bar; } // return 1 if already optimal, return 0 otherwise int Solver::select_working_set(int &out_i, int &out_j) { // return i,j such that // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmax = -INF; double Gmax2 = -INF; int Gmax_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t<active_size;t++) if(y[t]==+1) { if(!is_upper_bound(t)) if(-G[t] >= Gmax) { Gmax = -G[t]; Gmax_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmax) { Gmax = G[t]; Gmax_idx = t; } } int i = Gmax_idx; const Qfloat *Q_i = NULL; if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1 Q_i = Q->get_Q(i,active_size); for(int j=0;j<active_size;j++) { if(y[j]==+1) { if (!is_lower_bound(j)) { double grad_diff=Gmax+G[j]; if (G[j] >= Gmax2) Gmax2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef=Q_i[i]+QD[j]-2.0*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff= Gmax-G[j]; if (-G[j] >= Gmax2) Gmax2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef=Q_i[i]+QD[j]+2.0*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(Gmax+Gmax2 < eps) return 1; out_i = Gmax_idx; out_j = Gmin_idx; return 0; } bool Solver::be_shrunk(int i, double Gmax1, double Gmax2) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax2); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax1); } else return(false); } void Solver::do_shrinking() { int i; double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } // find maximal violating pair first for(i=0;i<active_size;i++) { if(y[i]==+1) { if(!is_upper_bound(i)) { if(-G[i] >= Gmax1) Gmax1 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax2) Gmax2 = G[i]; } } else { if(!is_upper_bound(i)) { if(-G[i] >= Gmax2) Gmax2 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax1) Gmax1 = G[i]; } } } if(unshrink == false && Gmax1 + Gmax2 <= eps*10) { unshrink = true; reconstruct_gradient(); active_size = l; info("*"); info_flush(); } for(i=0;i<active_size;i++) if (be_shrunk(i, Gmax1, Gmax2)) { active_size--; while (active_size > i) { if (!be_shrunk(active_size, Gmax1, Gmax2)) { swap_index(i,active_size); break; } active_size--; } } } double Solver::calculate_rho() { double r; int nr_free = 0; double ub = INF, lb = -INF, sum_free = 0; for(int i=0;i<active_size;i++) { double yG = y[i]*G[i]; if(is_upper_bound(i)) { if(y[i]==-1) ub = min(ub,yG); else lb = max(lb,yG); } else if(is_lower_bound(i)) { if(y[i]==+1) ub = min(ub,yG); else lb = max(lb,yG); } else { ++nr_free; sum_free += yG; } } if(nr_free>0) r = sum_free/nr_free; else r = (ub+lb)/2; return r; } // // Solver for nu-svm classification and regression // // additional constraint: e^T \alpha = constant // class Solver_NU : public Solver { public: Solver_NU() {} void Solve(int l, const QMatrix& Q, const double *p, const schar *y, double *alpha, double Cp, double Cn, double eps, SolutionInfo* si, int shrinking) { this->si = si; Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); } private: SolutionInfo *si; int select_working_set(int &i, int &j); double calculate_rho(); bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); void do_shrinking(); }; // return 1 if already optimal, return 0 otherwise int Solver_NU::select_working_set(int &out_i, int &out_j) { // return i,j such that y_i = y_j and // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmaxp = -INF; double Gmaxp2 = -INF; int Gmaxp_idx = -1; double Gmaxn = -INF; double Gmaxn2 = -INF; int Gmaxn_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t<active_size;t++) if(y[t]==+1) { if(!is_upper_bound(t)) if(-G[t] >= Gmaxp) { Gmaxp = -G[t]; Gmaxp_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmaxn) { Gmaxn = G[t]; Gmaxn_idx = t; } } int ip = Gmaxp_idx; int in = Gmaxn_idx; const Qfloat *Q_ip = NULL; const Qfloat *Q_in = NULL; if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1 Q_ip = Q->get_Q(ip,active_size); if(in != -1) Q_in = Q->get_Q(in,active_size); for(int j=0;j<active_size;j++) { if(y[j]==+1) { if (!is_lower_bound(j)) { double grad_diff=Gmaxp+G[j]; if (G[j] >= Gmaxp2) Gmaxp2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = Q_ip[ip]+QD[j]-2*Q_ip[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff=Gmaxn-G[j]; if (-G[j] >= Gmaxn2) Gmaxn2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = Q_in[in]+QD[j]-2*Q_in[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps) return 1; if (y[Gmin_idx] == +1) out_i = Gmaxp_idx; else out_i = Gmaxn_idx; out_j = Gmin_idx; return 0; } bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax4); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax3); } else return(false); } void Solver_NU::do_shrinking() { double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } // find maximal violating pair first int i; for(i=0;i<active_size;i++) { if(!is_upper_bound(i)) { if(y[i]==+1) { if(-G[i] > Gmax1) Gmax1 = -G[i]; } else if(-G[i] > Gmax4) Gmax4 = -G[i]; } if(!is_lower_bound(i)) { if(y[i]==+1) { if(G[i] > Gmax2) Gmax2 = G[i]; } else if(G[i] > Gmax3) Gmax3 = G[i]; } } if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) { unshrink = true; reconstruct_gradient(); active_size = l; } for(i=0;i<active_size;i++) if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4)) { active_size--; while (active_size > i) { if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) { swap_index(i,active_size); break; } active_size--; } } } double Solver_NU::calculate_rho() { int nr_free1 = 0,nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for(int i=0;i<active_size;i++) { if(y[i]==+1) { if(is_upper_bound(i)) lb1 = max(lb1,G[i]); else if(is_lower_bound(i)) ub1 = min(ub1,G[i]); else { ++nr_free1; sum_free1 += G[i]; } } else { if(is_upper_bound(i)) lb2 = max(lb2,G[i]); else if(is_lower_bound(i)) ub2 = min(ub2,G[i]); else { ++nr_free2; sum_free2 += G[i]; } } } double r1,r2; if(nr_free1 > 0) r1 = sum_free1/nr_free1; else r1 = (ub1+lb1)/2; if(nr_free2 > 0) r2 = sum_free2/nr_free2; else r2 = (ub2+lb2)/2; si->r = (r1+r2)/2; return (r1-r2)/2; } // // Q matrices for various formulations // class SVC_Q: public Kernel { public: SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_) :Kernel(prob.l, prob.x, param) { clone(y,y_,prob.l); cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); QD = new Qfloat[prob.l]; for(int i=0;i<prob.l;i++) QD[i]= (Qfloat)(this->*kernel_function)(i,i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start, j; if((start = cache->get_data(i,&data,len)) < len) { for(j=start;j<len;j++) data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j)); } return data; } Qfloat *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i,j); Kernel::swap_index(i,j); swap(y[i],y[j]); swap(QD[i],QD[j]); } ~SVC_Q() { delete[] y; delete cache; delete[] QD; } private: schar *y; Cache *cache; Qfloat *QD; }; class ONE_CLASS_Q: public Kernel { public: ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param) :Kernel(prob.l, prob.x, param) { cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); QD = new Qfloat[prob.l]; for(int i=0;i<prob.l;i++) QD[i]= (Qfloat)(this->*kernel_function)(i,i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start, j; if((start = cache->get_data(i,&data,len)) < len) { for(j=start;j<len;j++) data[j] = (Qfloat)(this->*kernel_function)(i,j); } return data; } Qfloat *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i,j); Kernel::swap_index(i,j); swap(QD[i],QD[j]); } ~ONE_CLASS_Q() { delete cache; delete[] QD; } private: Cache *cache; Qfloat *QD; }; class SVR_Q: public Kernel { public: SVR_Q(const svm_problem& prob, const svm_parameter& param) :Kernel(prob.l, prob.x, param) { l = prob.l; cache = new Cache(l,(long int)(param.cache_size*(1<<20))); QD = new Qfloat[2*l]; sign = new schar[2*l]; index = new int[2*l]; for(int k=0;k<l;k++) { sign[k] = 1; sign[k+l] = -1; index[k] = k; index[k+l] = k; QD[k]= (Qfloat)(this->*kernel_function)(k,k); QD[k+l]=QD[k]; } buffer[0] = new Qfloat[2*l]; buffer[1] = new Qfloat[2*l]; next_buffer = 0; } void swap_index(int i, int j) const { swap(sign[i],sign[j]); swap(index[i],index[j]); swap(QD[i],QD[j]); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int j, real_i = index[i]; if(cache->get_data(real_i,&data,l) < l) { for(j=0;j<l;j++) data[j] = (Qfloat)(this->*kernel_function)(real_i,j); } // reorder and copy Qfloat *buf = buffer[next_buffer]; next_buffer = 1 - next_buffer; schar si = sign[i]; for(int j=0;j<len;j++) buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]]; return buf; } Qfloat *get_QD() const { return QD; } ~SVR_Q() { delete cache; delete[] sign; delete[] index; delete[] buffer[0]; delete[] buffer[1]; delete[] QD; } private: int l; Cache *cache; schar *sign; int *index; mutable int next_buffer; Qfloat *buffer[2]; Qfloat *QD; }; // // construct and solve various formulations // static void solve_c_svc( const svm_problem *prob, const svm_parameter* param, double *alpha, Solver::SolutionInfo* si, double Cp, double Cn) { int l = prob->l; double *minus_ones = new double[l]; schar *y = new schar[l]; int i; for(i=0;i<l;i++) { alpha[i] = 0; minus_ones[i] = -1; if(prob->y[i] > 0) y[i] = +1; else y[i]=-1; } Solver s; s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, alpha, Cp, Cn, param->eps, si, param->shrinking); double sum_alpha=0; for(i=0;i<l;i++) sum_alpha += alpha[i]; if (Cp==Cn) info("nu = %f\n", sum_alpha/(Cp*prob->l)); for(i=0;i<l;i++) alpha[i] *= y[i]; delete[] minus_ones; delete[] y; } static void solve_nu_svc( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int i; int l = prob->l; double nu = param->nu; schar *y = new schar[l]; for(i=0;i<l;i++) if(prob->y[i]>0) y[i] = +1; else y[i] = -1; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;i<l;i++) if(y[i] == +1) { alpha[i] = min(1.0,sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = min(1.0,sum_neg); sum_neg -= alpha[i]; } double *zeros = new double[l]; for(i=0;i<l;i++) zeros[i] = 0; Solver_NU s; s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, alpha, 1.0, 1.0, param->eps, si, param->shrinking); double r = si->r; info("C = %f\n",1/r); for(i=0;i<l;i++) alpha[i] *= y[i]/r; si->rho /= r; si->obj /= (r*r); si->upper_bound_p = 1/r; si->upper_bound_n = 1/r; delete[] y; delete[] zeros; } static void solve_one_class( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int l = prob->l; double *zeros = new double[l]; schar *ones = new schar[l]; int i; int n = (int)(param->nu*prob->l); // # of alpha's at upper bound for(i=0;i<n;i++) alpha[i] = 1; if(n<prob->l) alpha[n] = param->nu * prob->l - n; for(i=n+1;i<l;i++) alpha[i] = 0; for(i=0;i<l;i++) { zeros[i] = 0; ones[i] = 1; } Solver s; s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones, alpha, 1.0, 1.0, param->eps, si, param->shrinking); delete[] zeros; delete[] ones; } static void solve_epsilon_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int l = prob->l; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; for(i=0;i<l;i++) { alpha2[i] = 0; linear_term[i] = param->p - prob->y[i]; y[i] = 1; alpha2[i+l] = 0; linear_term[i+l] = param->p + prob->y[i]; y[i+l] = -1; } Solver s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, param->C, param->C, param->eps, si, param->shrinking); double sum_alpha = 0; for(i=0;i<l;i++) { alpha[i] = alpha2[i] - alpha2[i+l]; sum_alpha += fabs(alpha[i]); } info("nu = %f\n",sum_alpha/(param->C*l)); delete[] alpha2; delete[] linear_term; delete[] y; } static void solve_nu_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int l = prob->l; double C = param->C; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; double sum = C * param->nu * l / 2; for(i=0;i<l;i++) { alpha2[i] = alpha2[i+l] = min(sum,C); sum -= alpha2[i]; linear_term[i] = - prob->y[i]; y[i] = 1; linear_term[i+l] = prob->y[i]; y[i+l] = -1; } Solver_NU s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking); info("epsilon = %f\n",-si->r); for(i=0;i<l;i++) alpha[i] = alpha2[i] - alpha2[i+l]; delete[] alpha2; delete[] linear_term; delete[] y; } // // decision_function // struct decision_function { double *alpha; double rho; }; decision_function svm_train_one( const svm_problem *prob, const svm_parameter *param, double Cp, double Cn) { double *alpha = Malloc(double,prob->l); Solver::SolutionInfo si; switch(param->svm_type) { case C_SVC: solve_c_svc(prob,param,alpha,&si,Cp,Cn); break; case NU_SVC: solve_nu_svc(prob,param,alpha,&si); break; case ONE_CLASS: solve_one_class(prob,param,alpha,&si); break; case EPSILON_SVR: solve_epsilon_svr(prob,param,alpha,&si); break; case NU_SVR: solve_nu_svr(prob,param,alpha,&si); break; } info("obj = %f, rho = %f\n",si.obj,si.rho); // output SVs int nSV = 0; int nBSV = 0; for(int i=0;i<prob->l;i++) { if(fabs(alpha[i]) > 0) { ++nSV; if(prob->y[i] > 0) { if(fabs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if(fabs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } info("nSV = %d, nBSV = %d\n",nSV,nBSV); decision_function f; f.alpha = alpha; f.rho = si.rho; return f; } /* // // svm_model // struct svm_model { svm_parameter param; // parameter int nr_class; // number of classes, = 2 in regression/one class svm int l; // total #SV svm_node **SV; // SVs (SV[l]) double **sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l]) double *rho; // constants in decision functions (rho[k*(k-1)/2]) double *probA; // pariwise probability information double *probB; // for classification only int *label; // label of each class (label[k]) int *nSV; // number of SVs for each class (nSV[k]) // nSV[0] + nSV[1] + ... + nSV[k-1] = l // XXX int free_sv; // 1 if svm_model is created by svm_load_model // 0 if svm_model is created by svm_train }; */ // Platt's binary SVM Probablistic Output: an improvement from Lin et al. void sigmoid_train( int l, const double *dec_values, const double *labels, double& A, double& B) { double prior1=0, prior0 = 0; int i; for (i=0;i<l;i++) if (labels[i] > 0) prior1+=1; else prior0+=1; int max_iter=100; // Maximal number of iterations double min_step=1e-10; // Minimal step taken in line search double sigma=1e-12; // For numerically strict PD of Hessian double eps=1e-5; double hiTarget=(prior1+1.0)/(prior1+2.0); double loTarget=1/(prior0+2.0); double *t=Malloc(double,l); double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; double newA,newB,newf,d1,d2; int iter; // Initial Point and Initial Fun Value A=0.0; B=log((prior0+1.0)/(prior1+1.0)); double fval = 0.0; for (i=0;i<l;i++) { if (labels[i]>0) t[i]=hiTarget; else t[i]=loTarget; fApB = dec_values[i]*A+B; if (fApB>=0) fval += t[i]*fApB + log(1+exp(-fApB)); else fval += (t[i] - 1)*fApB +log(1+exp(fApB)); } for (iter=0;iter<max_iter;iter++) { // Update Gradient and Hessian (use H' = H + sigma I) h11=sigma; // numerically ensures strict PD h22=sigma; h21=0.0;g1=0.0;g2=0.0; for (i=0;i<l;i++) { fApB = dec_values[i]*A+B; if (fApB >= 0) { p=exp(-fApB)/(1.0+exp(-fApB)); q=1.0/(1.0+exp(-fApB)); } else { p=1.0/(1.0+exp(fApB)); q=exp(fApB)/(1.0+exp(fApB)); } d2=p*q; h11+=dec_values[i]*dec_values[i]*d2; h22+=d2; h21+=dec_values[i]*d2; d1=t[i]-p; g1+=dec_values[i]*d1; g2+=d1; } // Stopping Criteria if (fabs(g1)<eps && fabs(g2)<eps) break; // Finding Newton direction: -inv(H') * g det=h11*h22-h21*h21; dA=-(h22*g1 - h21 * g2) / det; dB=-(-h21*g1+ h11 * g2) / det; gd=g1*dA+g2*dB; stepsize = 1; // Line Search while (stepsize >= min_step) { newA = A + stepsize * dA; newB = B + stepsize * dB; // New function value newf = 0.0; for (i=0;i<l;i++) { fApB = dec_values[i]*newA+newB; if (fApB >= 0) newf += t[i]*fApB + log(1+exp(-fApB)); else newf += (t[i] - 1)*fApB +log(1+exp(fApB)); } // Check sufficient decrease if (newf<fval+0.0001*stepsize*gd) { A=newA;B=newB;fval=newf; break; } else stepsize = stepsize / 2.0; } if (stepsize < min_step) { info("Line search fails in two-class probability estimates\n"); break; } } if (iter>=max_iter) info("Reaching maximal iterations in two-class probability estimates\n"); free(t); } double sigmoid_predict(double decision_value, double A, double B) { double fApB = decision_value*A+B; if (fApB >= 0) return exp(-fApB)/(1.0+exp(-fApB)); else return 1.0/(1+exp(fApB)) ; } // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng void multiclass_probability(int k, double **r, double *p) { int t,j; int iter = 0, max_iter=max(100,k); double **Q=Malloc(double *,k); double *Qp=Malloc(double,k); double pQp, eps=0.005/k; for (t=0;t<k;t++) { p[t]=1.0/k; // Valid if k = 1 Q[t]=Malloc(double,k); Q[t][t]=0; for (j=0;j<t;j++) { Q[t][t]+=r[j][t]*r[j][t]; Q[t][j]=Q[j][t]; } for (j=t+1;j<k;j++) { Q[t][t]+=r[j][t]*r[j][t]; Q[t][j]=-r[j][t]*r[t][j]; } } for (iter=0;iter<max_iter;iter++) { // stopping condition, recalculate QP,pQP for numerical accuracy pQp=0; for (t=0;t<k;t++) { Qp[t]=0; for (j=0;j<k;j++) Qp[t]+=Q[t][j]*p[j]; pQp+=p[t]*Qp[t]; } double max_error=0; for (t=0;t<k;t++) { double error=fabs(Qp[t]-pQp); if (error>max_error) max_error=error; } if (max_error<eps) break; for (t=0;t<k;t++) { double diff=(-Qp[t]+pQp)/Q[t][t]; p[t]+=diff; pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); for (j=0;j<k;j++) { Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); p[j]/=(1+diff); } } } if (iter>=max_iter) info("Exceeds max_iter in multiclass_prob\n"); for(t=0;t<k;t++) free(Q[t]); free(Q); free(Qp); } // Cross-validation decision values for probability estimates void svm_binary_svc_probability( const svm_problem *prob, const svm_parameter *param, double Cp, double Cn, double& probA, double& probB) { int i; int nr_fold = 5; int *perm = Malloc(int,prob->l); double *dec_values = Malloc(double,prob->l); // random shuffle for(i=0;i<prob->l;i++) perm[i]=i; for(i=0;i<prob->l;i++) { int j = i+rand()%(prob->l-i); swap(perm[i],perm[j]); } for(i=0;i<nr_fold;i++) { int begin = i*prob->l/nr_fold; int end = (i+1)*prob->l/nr_fold; int j,k; struct svm_problem subprob; subprob.l = prob->l-(end-begin); subprob.x = Malloc(struct svm_node*,subprob.l); subprob.y = Malloc(double,subprob.l); k=0; for(j=0;j<begin;j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } for(j=end;j<prob->l;j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } int p_count=0,n_count=0; for(j=0;j<k;j++) if(subprob.y[j]>0) p_count++; else n_count++; if(p_count==0 && n_count==0) for(j=begin;j<end;j++) dec_values[perm[j]] = 0; else if(p_count > 0 && n_count == 0) for(j=begin;j<end;j++) dec_values[perm[j]] = 1; else if(p_count == 0 && n_count > 0) for(j=begin;j<end;j++) dec_values[perm[j]] = -1; else { svm_parameter subparam = *param; subparam.probability=0; subparam.C=1.0; subparam.nr_weight=2; subparam.weight_label = Malloc(int,2); subparam.weight = Malloc(double,2); subparam.weight_label[0]=+1; subparam.weight_label[1]=-1; subparam.weight[0]=Cp; subparam.weight[1]=Cn; struct svm_model *submodel = svm_train(&subprob,&subparam); for(j=begin;j<end;j++) { svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); // ensure +1 -1 order; reason not using CV subroutine dec_values[perm[j]] *= submodel->label[0]; } svm_destroy_model(submodel); svm_destroy_param(&subparam); } free(subprob.x); free(subprob.y); } sigmoid_train(prob->l,dec_values,prob->y,probA,probB); free(dec_values); free(perm); } // Return parameter of a Laplace distribution double svm_svr_probability( const svm_problem *prob, const svm_parameter *param) { int i; int nr_fold = 5; double *ymv = Malloc(double,prob->l); double mae = 0; svm_parameter newparam = *param; newparam.probability = 0; svm_cross_validation(prob,&newparam,nr_fold,ymv); for(i=0;i<prob->l;i++) { ymv[i]=prob->y[i]-ymv[i]; mae += fabs(ymv[i]); } mae /= prob->l; double std=sqrt(2*mae*mae); int count=0; mae=0; for(i=0;i<prob->l;i++) if (fabs(ymv[i]) > 5*std) count=count+1; else mae+=fabs(ymv[i]); mae /= (prob->l-count); info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae); free(ymv); return mae; } // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data // perm, length l, must be allocated before calling this subroutine void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); int *count = Malloc(int,max_nr_class); int *data_label = Malloc(int,l); int i; for(i=0;i<l;i++) { int this_label = (int)prob->y[i]; int j; for(j=0;j<nr_class;j++) { if(this_label == label[j]) { ++count[j]; break; } } data_label[i] = j; if(j == nr_class) { if(nr_class == max_nr_class) { max_nr_class *= 2; label = (int *)realloc(label,max_nr_class*sizeof(int)); count = (int *)realloc(count,max_nr_class*sizeof(int)); } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; for(i=0;i<l;i++) { perm[start[data_label[i]]] = i; ++start[data_label[i]]; } start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; *nr_class_ret = nr_class; *label_ret = label; *start_ret = start; *count_ret = count; free(data_label); } // // Interface functions // svm_model *svm_train(const svm_problem *prob, const svm_parameter *param) { svm_model *model = Malloc(svm_model,1); model->param = *param; model->free_sv = 0; // XXX if(param->svm_type == ONE_CLASS || param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR) { // regression or one-class-svm model->nr_class = 2; model->label = NULL; model->nSV = NULL; model->probA = NULL; model->probB = NULL; model->sv_coef = Malloc(double *,1); if(param->probability && (param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR)) { model->probA = Malloc(double,1); model->probA[0] = svm_svr_probability(prob,param); } decision_function f = svm_train_one(prob,param,0,0); model->rho = Malloc(double,1); model->rho[0] = f.rho; int nSV = 0; int i; for(i=0;i<prob->l;i++) if(fabs(f.alpha[i]) > 0) ++nSV; model->l = nSV; model->SV = Malloc(svm_node *,nSV); model->sv_coef[0] = Malloc(double,nSV); int j = 0; for(i=0;i<prob->l;i++) if(fabs(f.alpha[i]) > 0) { model->SV[j] = prob->x[i]; model->sv_coef[0][j] = f.alpha[i]; ++j; } free(f.alpha); } else { // classification int l = prob->l; int nr_class; int *label = NULL; int *start = NULL; int *count = NULL; int *perm = Malloc(int,l); // group training data of the same class svm_group_classes(prob,&nr_class,&label,&start,&count,perm); svm_node **x = Malloc(svm_node *,l); int i; for(i=0;i<l;i++) x[i] = prob->x[perm[i]]; // calculate weighted C double *weighted_C = Malloc(double, nr_class); for(i=0;i<nr_class;i++) weighted_C[i] = param->C; for(i=0;i<param->nr_weight;i++) { int j; for(j=0;j<nr_class;j++) if(param->weight_label[i] == label[j]) break; if(j == nr_class) fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]); else weighted_C[j] *= param->weight[i]; } // train k*(k-1)/2 models bool *nonzero = Malloc(bool,l); for(i=0;i<l;i++) nonzero[i] = false; decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2); double *probA=NULL,*probB=NULL; if (param->probability) { probA=Malloc(double,nr_class*(nr_class-1)/2); probB=Malloc(double,nr_class*(nr_class-1)/2); } int p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { svm_problem sub_prob; int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; sub_prob.l = ci+cj; sub_prob.x = Malloc(svm_node *,sub_prob.l); sub_prob.y = Malloc(double,sub_prob.l); int k; for(k=0;k<ci;k++) { sub_prob.x[k] = x[si+k]; sub_prob.y[k] = +1; } for(k=0;k<cj;k++) { sub_prob.x[ci+k] = x[sj+k]; sub_prob.y[ci+k] = -1; } if(param->probability) svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]); f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); for(k=0;k<ci;k++) if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0) nonzero[si+k] = true; for(k=0;k<cj;k++) if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0) nonzero[sj+k] = true; free(sub_prob.x); free(sub_prob.y); ++p; } // build output model->nr_class = nr_class; model->label = Malloc(int,nr_class); for(i=0;i<nr_class;i++) model->label[i] = label[i]; model->rho = Malloc(double,nr_class*(nr_class-1)/2); for(i=0;i<nr_class*(nr_class-1)/2;i++) model->rho[i] = f[i].rho; if(param->probability) { model->probA = Malloc(double,nr_class*(nr_class-1)/2); model->probB = Malloc(double,nr_class*(nr_class-1)/2); for(i=0;i<nr_class*(nr_class-1)/2;i++) { model->probA[i] = probA[i]; model->probB[i] = probB[i]; } } else { model->probA=NULL; model->probB=NULL; } int total_sv = 0; int *nz_count = Malloc(int,nr_class); model->nSV = Malloc(int,nr_class); for(i=0;i<nr_class;i++) { int nSV = 0; for(int j=0;j<count[i];j++) if(nonzero[start[i]+j]) { ++nSV; ++total_sv; } model->nSV[i] = nSV; nz_count[i] = nSV; } info("Total nSV = %d\n",total_sv); model->l = total_sv; model->SV = Malloc(svm_node *,total_sv); p = 0; for(i=0;i<l;i++) if(nonzero[i]) model->SV[p++] = x[i]; int *nz_start = Malloc(int,nr_class); nz_start[0] = 0; for(i=1;i<nr_class;i++) nz_start[i] = nz_start[i-1]+nz_count[i-1]; model->sv_coef = Malloc(double *,nr_class-1); for(i=0;i<nr_class-1;i++) model->sv_coef[i] = Malloc(double,total_sv); p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for(k=0;k<ci;k++) if(nonzero[si+k]) model->sv_coef[j-1][q++] = f[p].alpha[k]; q = nz_start[j]; for(k=0;k<cj;k++) if(nonzero[sj+k]) model->sv_coef[i][q++] = f[p].alpha[ci+k]; ++p; } free(label); free(probA); free(probB); free(count); free(perm); free(start); free(x); free(weighted_C); free(nonzero); for(i=0;i<nr_class*(nr_class-1)/2;i++) free(f[i].alpha); free(f); free(nz_count); free(nz_start); } return model; } // Stratified cross validation void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target) { int i; int *fold_start = Malloc(int,nr_fold+1); int l = prob->l; int *perm = Malloc(int,l); int nr_class; // stratified cv may not give leave-one-out rate // Each class to l folds -> some folds may have zero elements if((param->svm_type == C_SVC || param->svm_type == NU_SVC) && nr_fold < l) { int *start = NULL; int *label = NULL; int *count = NULL; svm_group_classes(prob,&nr_class,&label,&start,&count,perm); // random shuffle and then data grouped by fold using the array perm int *fold_count = Malloc(int,nr_fold); int c; int *index = Malloc(int,l); for(i=0;i<l;i++) index[i]=perm[i]; for (c=0; c<nr_class; c++) for(i=0;i<count[c];i++) { int j = i+rand()%(count[c]-i); swap(index[start[c]+j],index[start[c]+i]); } for(i=0;i<nr_fold;i++) { fold_count[i] = 0; for (c=0; c<nr_class;c++) fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold; } fold_start[0]=0; for (i=1;i<=nr_fold;i++) fold_start[i] = fold_start[i-1]+fold_count[i-1]; for (c=0; c<nr_class;c++) for(i=0;i<nr_fold;i++) { int begin = start[c]+i*count[c]/nr_fold; int end = start[c]+(i+1)*count[c]/nr_fold; for(int j=begin;j<end;j++) { perm[fold_start[i]] = index[j]; fold_start[i]++; } } fold_start[0]=0; for (i=1;i<=nr_fold;i++) fold_start[i] = fold_start[i-1]+fold_count[i-1]; free(start); free(label); free(count); free(index); free(fold_count); } else { for(i=0;i<l;i++) perm[i]=i; for(i=0;i<l;i++) { int j = i+rand()%(l-i); swap(perm[i],perm[j]); } for(i=0;i<=nr_fold;i++) fold_start[i]=i*l/nr_fold; } for(i=0;i<nr_fold;i++) { int begin = fold_start[i]; int end = fold_start[i+1]; int j,k; struct svm_problem subprob; subprob.l = l-(end-begin); subprob.x = Malloc(struct svm_node*,subprob.l); subprob.y = Malloc(double,subprob.l); k=0; for(j=0;j<begin;j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } for(j=end;j<l;j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } struct svm_model *submodel = svm_train(&subprob,param); if(param->probability && (param->svm_type == C_SVC || param->svm_type == NU_SVC)) { double *prob_estimates=Malloc(double,svm_get_nr_class(submodel)); for(j=begin;j<end;j++) target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates); free(prob_estimates); } else for(j=begin;j<end;j++) target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]); svm_destroy_model(submodel); free(subprob.x); free(subprob.y); } free(fold_start); free(perm); } int svm_get_svm_type(const svm_model *model) { return model->param.svm_type; } int svm_get_nr_class(const svm_model *model) { return model->nr_class; } void svm_get_labels(const svm_model *model, int* label) { if (model->label != NULL) for(int i=0;i<model->nr_class;i++) label[i] = model->label[i]; } double svm_get_svr_probability(const svm_model *model) { if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA!=NULL) return model->probA[0]; else { info("Model doesn't contain information for SVR probability inference\n"); return 0; } } void svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values) { if(model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { double *sv_coef = model->sv_coef[0]; double sum = 0; for(int i=0;i<model->l;i++) sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param); sum -= model->rho[0]; *dec_values = sum; } else { int i; int nr_class = model->nr_class; int l = model->l; double *kvalue = Malloc(double,l); for(i=0;i<l;i++) kvalue[i] = Kernel::k_function(x,model->SV[i],model->param); int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+model->nSV[i-1]; int p=0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { double sum = 0; int si = start[i]; int sj = start[j]; int ci = model->nSV[i]; int cj = model->nSV[j]; int k; double *coef1 = model->sv_coef[j-1]; double *coef2 = model->sv_coef[i]; for(k=0;k<ci;k++) sum += coef1[si+k] * kvalue[si+k]; for(k=0;k<cj;k++) sum += coef2[sj+k] * kvalue[sj+k]; sum -= model->rho[p]; dec_values[p] = sum; p++; } free(kvalue); free(start); } } double svm_predict(const svm_model *model, const svm_node *x) { if(model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { double res; svm_predict_values(model, x, &res); if(model->param.svm_type == ONE_CLASS) return (res>0)?1:-1; else return res; } else { int i; int nr_class = model->nr_class; double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); svm_predict_values(model, x, dec_values); int *vote = Malloc(int,nr_class); for(i=0;i<nr_class;i++) vote[i] = 0; int pos=0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { if(dec_values[pos++] > 0) ++vote[i]; else ++vote[j]; } int vote_max_idx = 0; for(i=1;i<nr_class;i++) if(vote[i] > vote[vote_max_idx]) vote_max_idx = i; free(vote); free(dec_values); return model->label[vote_max_idx]; } } double svm_predict_probability( const svm_model *model, const svm_node *x, double *prob_estimates) { if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA!=NULL && model->probB!=NULL) { int i; int nr_class = model->nr_class; double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); svm_predict_values(model, x, dec_values); double min_prob=1e-7; double **pairwise_prob=Malloc(double *,nr_class); for(i=0;i<nr_class;i++) pairwise_prob[i]=Malloc(double,nr_class); int k=0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob); pairwise_prob[j][i]=1-pairwise_prob[i][j]; k++; } multiclass_probability(nr_class,pairwise_prob,prob_estimates); int prob_max_idx = 0; for(i=1;i<nr_class;i++) if(prob_estimates[i] > prob_estimates[prob_max_idx]) prob_max_idx = i; for(i=0;i<nr_class;i++) free(pairwise_prob[i]); free(dec_values); free(pairwise_prob); return model->label[prob_max_idx]; } else return svm_predict(model, x); } const char *svm_type_table[] = { "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL }; const char *kernel_type_table[]= { "linear","polynomial","rbf","sigmoid","precomputed",NULL }; int svm_save_model(const char *model_file_name, const svm_model *model) { FILE *fp = fopen(model_file_name,"w"); if(fp==NULL) return -1; const svm_parameter& param = model->param; fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]); fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]); if(param.kernel_type == POLY) fprintf(fp,"degree %d\n", param.degree); if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) fprintf(fp,"gamma %g\n", param.gamma); if(param.kernel_type == POLY || param.kernel_type == SIGMOID) fprintf(fp,"coef0 %g\n", param.coef0); int nr_class = model->nr_class; int l = model->l; fprintf(fp, "nr_class %d\n", nr_class); fprintf(fp, "total_sv %d\n",l); { fprintf(fp, "rho"); for(int i=0;i<nr_class*(nr_class-1)/2;i++) fprintf(fp," %g",model->rho[i]); fprintf(fp, "\n"); } if(model->label) { fprintf(fp, "label"); for(int i=0;i<nr_class;i++) fprintf(fp," %d",model->label[i]); fprintf(fp, "\n"); } if(model->probA) // regression has probA only { fprintf(fp, "probA"); for(int i=0;i<nr_class*(nr_class-1)/2;i++) fprintf(fp," %g",model->probA[i]); fprintf(fp, "\n"); } if(model->probB) { fprintf(fp, "probB"); for(int i=0;i<nr_class*(nr_class-1)/2;i++) fprintf(fp," %g",model->probB[i]); fprintf(fp, "\n"); } if(model->nSV) { fprintf(fp, "nr_sv"); for(int i=0;i<nr_class;i++) fprintf(fp," %d",model->nSV[i]); fprintf(fp, "\n"); } fprintf(fp, "SV\n"); const double * const *sv_coef = model->sv_coef; const svm_node * const *SV = model->SV; for(int i=0;i<l;i++) { for(int j=0;j<nr_class-1;j++) fprintf(fp, "%.16g ",sv_coef[j][i]); const svm_node *p = SV[i]; if(param.kernel_type == PRECOMPUTED) fprintf(fp,"0:%d ",(int)(p->value)); else while(p->index != -1) { fprintf(fp,"%d:%.8g ",p->index,p->value); p++; } fprintf(fp, "\n"); } if (ferror(fp) != 0 || fclose(fp) != 0) return -1; else return 0; } svm_model *svm_load_model(const char *model_file_name) { FILE *fp = fopen(model_file_name,"rb"); if(fp==NULL) return NULL; // read parameters svm_model *model = Malloc(svm_model,1); svm_parameter& param = model->param; model->rho = NULL; model->probA = NULL; model->probB = NULL; model->label = NULL; model->nSV = NULL; char cmd[81]; while(1) { fscanf(fp,"%80s",cmd); if(strcmp(cmd,"svm_type")==0) { fscanf(fp,"%80s",cmd); int i; for(i=0;svm_type_table[i];i++) { if(strcmp(svm_type_table[i],cmd)==0) { param.svm_type=i; break; } } if(svm_type_table[i] == NULL) { fprintf(stderr,"unknown svm type.\n"); free(model->rho); free(model->label); free(model->nSV); free(model); return NULL; } } else if(strcmp(cmd,"kernel_type")==0) { fscanf(fp,"%80s",cmd); int i; for(i=0;kernel_type_table[i];i++) { if(strcmp(kernel_type_table[i],cmd)==0) { param.kernel_type=i; break; } } if(kernel_type_table[i] == NULL) { fprintf(stderr,"unknown kernel function.\n"); free(model->rho); free(model->label); free(model->nSV); free(model); return NULL; } } else if(strcmp(cmd,"degree")==0) fscanf(fp,"%d",¶m.degree); else if(strcmp(cmd,"gamma")==0) fscanf(fp,"%lf",¶m.gamma); else if(strcmp(cmd,"coef0")==0) fscanf(fp,"%lf",¶m.coef0); else if(strcmp(cmd,"nr_class")==0) fscanf(fp,"%d",&model->nr_class); else if(strcmp(cmd,"total_sv")==0) fscanf(fp,"%d",&model->l); else if(strcmp(cmd,"rho")==0) { int n = model->nr_class * (model->nr_class-1)/2; model->rho = Malloc(double,n); for(int i=0;i<n;i++) fscanf(fp,"%lf",&model->rho[i]); } else if(strcmp(cmd,"label")==0) { int n = model->nr_class; model->label = Malloc(int,n); for(int i=0;i<n;i++) fscanf(fp,"%d",&model->label[i]); } else if(strcmp(cmd,"probA")==0) { int n = model->nr_class * (model->nr_class-1)/2; model->probA = Malloc(double,n); for(int i=0;i<n;i++) fscanf(fp,"%lf",&model->probA[i]); } else if(strcmp(cmd,"probB")==0) { int n = model->nr_class * (model->nr_class-1)/2; model->probB = Malloc(double,n); for(int i=0;i<n;i++) fscanf(fp,"%lf",&model->probB[i]); } else if(strcmp(cmd,"nr_sv")==0) { int n = model->nr_class; model->nSV = Malloc(int,n); for(int i=0;i<n;i++) fscanf(fp,"%d",&model->nSV[i]); } else if(strcmp(cmd,"SV")==0) { while(1) { int c = getc(fp); if(c==EOF || c=='\n') break; } break; } else { fprintf(stderr,"unknown text in model file: [%s]\n",cmd); free(model->rho); free(model->label); free(model->nSV); free(model); return NULL; } } // read sv_coef and SV int elements = 0; long pos = ftell(fp); while(1) { int c = fgetc(fp); switch(c) { case '\n': // count the '-1' element case ':': ++elements; break; case EOF: goto out; default: ; } } out: fseek(fp,pos,SEEK_SET); int m = model->nr_class - 1; int l = model->l; model->sv_coef = Malloc(double *,m); int i; for(i=0;i<m;i++) model->sv_coef[i] = Malloc(double,l); model->SV = Malloc(svm_node*,l); svm_node *x_space=NULL; if(l>0) x_space = Malloc(svm_node,elements); int j=0; for(i=0;i<l;i++) { model->SV[i] = &x_space[j]; for(int k=0;k<m;k++) fscanf(fp,"%lf",&model->sv_coef[k][i]); while(1) { int c; do { c = getc(fp); if(c=='\n') goto out2; } while(isspace(c)); ungetc(c,fp); fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value)); ++j; } out2: x_space[j++].index = -1; } if (ferror(fp) != 0 || fclose(fp) != 0) return NULL; model->free_sv = 1; // XXX return model; } void svm_destroy_model(svm_model* model) { if(model->free_sv && model->l > 0) free((void *)(model->SV[0])); for(int i=0;i<model->nr_class-1;i++) free(model->sv_coef[i]); free(model->SV); free(model->sv_coef); free(model->rho); free(model->label); free(model->probA); free(model->probB); free(model->nSV); free(model); } void svm_destroy_param(svm_parameter* param) { free(param->weight_label); free(param->weight); } const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param) { // svm_type int svm_type = param->svm_type; if(svm_type != C_SVC && svm_type != NU_SVC && svm_type != ONE_CLASS && svm_type != EPSILON_SVR && svm_type != NU_SVR) return "unknown svm type"; // kernel_type, degree int kernel_type = param->kernel_type; if(kernel_type != LINEAR && kernel_type != POLY && kernel_type != RBF && kernel_type != SIGMOID && kernel_type != PRECOMPUTED) return "unknown kernel type"; if(param->degree < 0) return "degree of polynomial kernel < 0"; // cache_size,eps,C,nu,p,shrinking if(param->cache_size <= 0) return "cache_size <= 0"; if(param->eps <= 0) return "eps <= 0"; if(svm_type == C_SVC || svm_type == EPSILON_SVR || svm_type == NU_SVR) if(param->C <= 0) return "C <= 0"; if(svm_type == NU_SVC || svm_type == ONE_CLASS || svm_type == NU_SVR) if(param->nu <= 0 || param->nu > 1) return "nu <= 0 or nu > 1"; if(svm_type == EPSILON_SVR) if(param->p < 0) return "p < 0"; if(param->shrinking != 0 && param->shrinking != 1) return "shrinking != 0 and shrinking != 1"; if(param->probability != 0 && param->probability != 1) return "probability != 0 and probability != 1"; if(param->probability == 1 && svm_type == ONE_CLASS) return "one-class SVM probability output not supported yet"; // check whether nu-svc is feasible if(svm_type == NU_SVC) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); int *count = Malloc(int,max_nr_class); int i; for(i=0;i<l;i++) { int this_label = (int)prob->y[i]; int j; for(j=0;j<nr_class;j++) if(this_label == label[j]) { ++count[j]; break; } if(j == nr_class) { if(nr_class == max_nr_class) { max_nr_class *= 2; label = (int *)realloc(label,max_nr_class*sizeof(int)); count = (int *)realloc(count,max_nr_class*sizeof(int)); } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } for(i=0;i<nr_class;i++) { int n1 = count[i]; for(int j=i+1;j<nr_class;j++) { int n2 = count[j]; if(param->nu*(n1+n2)/2 > min(n1,n2)) { free(label); free(count); return "specified nu is infeasible"; } } } free(label); free(count); } return NULL; } int svm_check_probability_model(const svm_model *model) { return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA!=NULL && model->probB!=NULL) || ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA!=NULL); }