Christoph Budziszewski
starting som prediction fine-tuned class-performance visualisation
Christoph Budziszewski commited 4dbef18 at 2009-01-21 16:34:25
som_normalize.m
function sD = som_normalize(sD,method,comps)
%SOM_NORMALIZE (Re)normalize data or add new normalizations.
%
% sS = som_normalize(sS,[method],[comps])
%
% sS = som_normalize(sD)
% sS = som_normalize(sS,sNorm)
% D = som_normalize(D,'var')
% sS = som_normalize(sS,'histC',[1:3 10])
%
% Input and output arguments ([]'s are optional):
% sS The data to which the normalization is applied.
% The modified and updated data is returned.
% (struct) data or map struct
% (matrix) data matrix (a matrix is also returned)
% [method] The normalization method(s) to add/use. If missing,
% or an empty variable ('') is given, the
% normalizations in sS are used.
% (string) identifier for a normalization method to be added:
% 'var', 'range', 'log', 'logistic', 'histD' or 'histC'.
% (struct) Normalization struct, or an array of such.
% Alternatively, a map/data struct can be given
% in which case its '.comp_norm' field is used
% (see below).
% (cell array) Of normalization structs. Typically, the
% '.comp_norm' field of a map/data struct. The
% length of the array must be equal to data dimension.
% (cellstr array) norm and denorm operations in a cellstr array
% which are evaluated with EVAL command with variable
% name 'x' reserved for the variable.
% [comps] (vector) the components to which the normalization is
% applied, default is [1:dim] ie. all components
%
% For more help, try 'type som_normalize' or check out online documentation.
% See also SOM_DENORMALIZE, SOM_NORM_VARIABLE, SOM_INFO.
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% som_normalize
%
% PURPOSE
%
% Add/apply/redo normalization on data structs/sets.
%
% SYNTAX
%
% sS = som_normalize(sS)
% sS = som_normalize(sS,method)
% D = som_normalize(D,sNorm)
% sS = som_normalize(sS,csNorm)
 
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX