git.schokokeks.org
Repositories
Help
Report an Issue
SVMCrossVal.git
Code
Commits
Branches
Tags
Suche
Strukturansicht:
2095645
Branches
Tags
master
SVMCrossVal.git
libsvm-mat-2.88-1
svmpredict.c
SVMCrossVal toolbox init
Christoph Budziszewski
commited
2095645
at 2008-12-17 13:45:29
svmpredict.c
Blame
History
Raw
#include <stdio.h> #include <stdlib.h> #include <string.h> #include "svm.h" #include "mex.h" #include "svm_model_matlab.h" #if MX_API_VER < 0x07030000 typedef int mwIndex; #endif #define CMD_LEN 2048 void read_sparse_instance(const mxArray *prhs, int index, struct svm_node *x) { int i, j, low, high; mwIndex *ir, *jc; double *samples; ir = mxGetIr(prhs); jc = mxGetJc(prhs); samples = mxGetPr(prhs); // each column is one instance j = 0; low = jc[index], high = jc[index+1]; for(i=low;i<high;i++) { x[j].index = ir[i] + 1; x[j].value = samples[i]; j++; } x[j].index = -1; } static void fake_answer(mxArray *plhs[]) { plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL); plhs[1] = mxCreateDoubleMatrix(0, 0, mxREAL); plhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL); } void predict(mxArray *plhs[], const mxArray *prhs[], struct svm_model *model, const int predict_probability) { int label_vector_row_num, label_vector_col_num; int feature_number, testing_instance_number; int instance_index; double *ptr_instance, *ptr_label, *ptr_predict_label; double *ptr_prob_estimates, *ptr_dec_values, *ptr; struct svm_node *x; mxArray *pplhs[1]; // transposed instance sparse matrix int correct = 0; int total = 0; double error = 0; double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; int svm_type=svm_get_svm_type(model); int nr_class=svm_get_nr_class(model); double *prob_estimates=NULL; // prhs[1] = testing instance matrix feature_number = mxGetN(prhs[1]); testing_instance_number = mxGetM(prhs[1]); label_vector_row_num = mxGetM(prhs[0]); label_vector_col_num = mxGetN(prhs[0]); if(label_vector_row_num!=testing_instance_number) { mexPrintf("Length of label vector does not match # of instances.\n"); fake_answer(plhs); return; } if(label_vector_col_num!=1) { mexPrintf("label (1st argument) should be a vector (# of column is 1).\n"); fake_answer(plhs); return; } ptr_instance = mxGetPr(prhs[1]); ptr_label = mxGetPr(prhs[0]); // transpose instance matrix if(mxIsSparse(prhs[1])) { if(model->param.kernel_type == PRECOMPUTED) { // precomputed kernel requires dense matrix, so we make one mxArray *rhs[1], *lhs[1]; rhs[0] = mxDuplicateArray(prhs[1]); if(mexCallMATLAB(1, lhs, 1, rhs, "full")) { mexPrintf("Error: cannot full testing instance matrix\n"); fake_answer(plhs); return; } ptr_instance = mxGetPr(lhs[0]); mxDestroyArray(rhs[0]); } else { mxArray *pprhs[1]; pprhs[0] = mxDuplicateArray(prhs[1]); if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose")) { mexPrintf("Error: cannot transpose testing instance matrix\n"); fake_answer(plhs); return; } } } if(predict_probability) { if(svm_type==NU_SVR || svm_type==EPSILON_SVR) mexPrintf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); else prob_estimates = (double *) malloc(nr_class*sizeof(double)); } plhs[0] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL); if(predict_probability) { // prob estimates are in plhs[2] if(svm_type==C_SVC || svm_type==NU_SVC) plhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class, mxREAL); else plhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL); } else { // decision values are in plhs[2] if(svm_type == ONE_CLASS || svm_type == EPSILON_SVR || svm_type == NU_SVR) plhs[2] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL); else plhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class*(nr_class-1)/2, mxREAL); } ptr_predict_label = mxGetPr(plhs[0]); ptr_prob_estimates = mxGetPr(plhs[2]); ptr_dec_values = mxGetPr(plhs[2]); x = (struct svm_node*)malloc((feature_number+1)*sizeof(struct svm_node) ); for(instance_index=0;instance_index<testing_instance_number;instance_index++) { int i; double target,v; target = ptr_label[instance_index]; if(mxIsSparse(prhs[1]) && model->param.kernel_type != PRECOMPUTED) // prhs[1]^T is still sparse read_sparse_instance(pplhs[0], instance_index, x); else { for(i=0;i<feature_number;i++) { x[i].index = i+1; x[i].value = ptr_instance[testing_instance_number*i+instance_index]; } x[feature_number].index = -1; } if(predict_probability) { if(svm_type==C_SVC || svm_type==NU_SVC) { v = svm_predict_probability(model, x, prob_estimates); ptr_predict_label[instance_index] = v; for(i=0;i<nr_class;i++) ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i]; } else { v = svm_predict(model,x); ptr_predict_label[instance_index] = v; } } else { v = svm_predict(model,x); ptr_predict_label[instance_index] = v; if(svm_type == ONE_CLASS || svm_type == EPSILON_SVR || svm_type == NU_SVR) { double res; svm_predict_values(model, x, &res); ptr_dec_values[instance_index] = res; } else { double *dec_values = (double *) malloc(sizeof(double) * nr_class*(nr_class-1)/2); svm_predict_values(model, x, dec_values); for(i=0;i<(nr_class*(nr_class-1))/2;i++) ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i]; free(dec_values); } } if(v == target) ++correct; error += (v-target)*(v-target); sumv += v; sumy += target; sumvv += v*v; sumyy += target*target; sumvy += v*target; ++total; } if(svm_type==NU_SVR || svm_type==EPSILON_SVR) { mexPrintf("Mean squared error = %g (regression)\n",error/total); mexPrintf("Squared correlation coefficient = %g (regression)\n", ((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/ ((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy)) ); } else mexPrintf("Accuracy = %g%% (%d/%d) (classification)\n", (double)correct/total*100,correct,total); // return accuracy, mean squared error, squared correlation coefficient plhs[1] = mxCreateDoubleMatrix(3, 1, mxREAL); ptr = mxGetPr(plhs[1]); ptr[0] = (double)correct/total*100; ptr[1] = error/total; ptr[2] = ((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/ ((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy)); free(x); if(prob_estimates != NULL) free(prob_estimates); } void exit_with_help() { mexPrintf( "Usage: [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model, 'libsvm_options')\n" "libsvm_options:\n" "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n" ); } void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] ) { int prob_estimate_flag = 0; struct svm_model *model; if(nrhs > 4 || nrhs < 3) { exit_with_help(); fake_answer(plhs); return; } if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) { mexPrintf("Error: label vector and instance matrix must be double\n"); fake_answer(plhs); return; } if(mxIsStruct(prhs[2])) { const char *error_msg; // parse options if(nrhs==4) { int i, argc = 1; char cmd[CMD_LEN], *argv[CMD_LEN/2]; // put options in argv[] mxGetString(prhs[3], cmd, mxGetN(prhs[3]) + 1); if((argv[argc] = strtok(cmd, " ")) != NULL) while((argv[++argc] = strtok(NULL, " ")) != NULL) ; for(i=1;i<argc;i++) { if(argv[i][0] != '-') break; if(++i>=argc) { exit_with_help(); fake_answer(plhs); return; } switch(argv[i-1][1]) { case 'b': prob_estimate_flag = atoi(argv[i]); break; default: mexPrintf("Unknown option: -%c\n", argv[i-1][1]); exit_with_help(); fake_answer(plhs); return; } } } model = matlab_matrix_to_model(prhs[2], &error_msg); if (model == NULL) { mexPrintf("Error: can't read model: %s\n", error_msg); fake_answer(plhs); return; } if(prob_estimate_flag) { if(svm_check_probability_model(model)==0) { mexPrintf("Model does not support probabiliy estimates\n"); fake_answer(plhs); svm_destroy_model(model); return; } } else { if(svm_check_probability_model(model)!=0) printf("Model supports probability estimates, but disabled in predicton.\n"); } predict(plhs, prhs, model, prob_estimate_flag); // destroy model svm_destroy_model(model); } else { mexPrintf("model file should be a struct array\n"); fake_answer(plhs); } return; }