Christoph Budziszewski commited on 2008-12-17 13:45:29
Zeige 43 geänderte Dateien mit 5861 Einfügungen und 0 Löschungen.
git-svn-id: https://svn.discofish.de/MATLAB/spmtoolbox/SVMCrossVal@90 83ab2cfd-5345-466c-8aeb-2b2739fb922d
... | ... |
@@ -0,0 +1,26 @@ |
1 |
+function map = LabelMap(label,value) |
|
2 |
+%LabelMap(labelCellList,valueCellList) maps Label to Classvalues suitable for |
|
3 |
+%SVM |
|
4 |
+ |
|
5 |
+if nargin == 2 |
|
6 |
+ if ~ (iscell(label) && iscell(value)) |
|
7 |
+ error('LabelMap:Constructor:argsNoCell','Arguments have to be CellArrays. Vectors not yet supported. sorry.'); |
|
8 |
+ end |
|
9 |
+ if(any(size(label) ~= size(value))) |
|
10 |
+ error('LabelMap:Constructor:sizeDontMatch','Label List and Value List must be the same size!'); |
|
11 |
+ end |
|
12 |
+ |
|
13 |
+ map.labelToValue = java.util.HashMap; |
|
14 |
+ map.valueToLabel = java.util.HashMap; |
|
15 |
+ |
|
16 |
+ for i = 1:max(size(label)) % cell array is 1:x or x:1, indexing is same |
|
17 |
+ map.labelToValue.put(label{i},value{i}); |
|
18 |
+ map.valueToLabel.put(value{i},label{i}); |
|
19 |
+ end |
|
20 |
+ |
|
21 |
+ map = class(map,'LabelMap'); |
|
22 |
+else |
|
23 |
+ error('LabelMap:Constructor:noArgs','Sorry, default constructor not supported yet!'); |
|
24 |
+end |
|
25 |
+ |
|
26 |
+end |
|
0 | 27 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,6 @@ |
1 |
+function label = getLabel(mapping,classValue) |
|
2 |
+if mapping.valueToLabel.containsKey(classValue) |
|
3 |
+ label = mapping.valueToLabel.get(classValue); |
|
4 |
+else |
|
5 |
+ error('LabelMap:getLabel:noSuchValue','this Mapping does not contain a Value %d',classValue); |
|
6 |
+end |
|
0 | 7 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,6 @@ |
1 |
+function value = getValue(mapping,classLabel) |
|
2 |
+if mapping.labelToValue.containsKey(classLabel) |
|
3 |
+ value = mapping.labelToValue.get(classLabel); |
|
4 |
+else |
|
5 |
+ error('LabelMap:getValue:noSuchLabel','this Mapping does not contain a Label ''%s''',classLabel); |
|
6 |
+end |
|
0 | 7 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,147 @@ |
1 |
+function m = SubjectRoiMapping(argv) |
|
2 |
+%SUBJECTROIMAPPING Subject to ROI to Coordinate Mapping Class Constructor |
|
3 |
+% m = SUBJECTROIMAPPING() creates a predefined ROI Coordinate Mapping. |
|
4 |
+% normally called without any arguments |
|
5 |
+ |
|
6 |
+if nargin == 0 |
|
7 |
+ m.subject{1} ='AI020'; |
|
8 |
+ m.subject{2} ='BD001'; |
|
9 |
+ m.subject{3} ='HG027'; |
|
10 |
+ m.subject{4} ='IK011'; |
|
11 |
+ m.subject{5} ='JZ006'; % Guter Proband |
|
12 |
+ m.subject{6} ='LB001'; |
|
13 |
+ m.subject{7} ='SW007'; |
|
14 |
+ m.subject{8} ='VW005'; |
|
15 |
+ |
|
16 |
+ m.subjectNameMap = java.util.HashMap; |
|
17 |
+ for subj = 1:size(m.subject,2) |
|
18 |
+ m.subjectNameMap.put(m.subject{subj},subj); |
|
19 |
+ end |
|
20 |
+ |
|
21 |
+ |
|
22 |
+ |
|
23 |
+ m.roi_name{1} ='SPL l'; % <-Parietalkortex links |
|
24 |
+ m.roi_name{2} ='SPL r'; % <-Parietalkortex rechts |
|
25 |
+ m.roi_name{3} ='PMd l'; |
|
26 |
+ m.roi_name{4} ='PMd r'; |
|
27 |
+ m.roi_name{5} ='IPSa l'; |
|
28 |
+ m.roi_name{6} ='IPSa r'; |
|
29 |
+ m.roi_name{7} ='SMA'; |
|
30 |
+ m.roi_name{8} ='DLPFC'; |
|
31 |
+ m.roi_name{9} ='V1 l'; |
|
32 |
+ m.roi_name{10} ='V1 r'; |
|
33 |
+ m.roi_name{11} ='M1 l'; % <-Motorischer Cortex l |
|
34 |
+ m.roi_name{12} ='M1 r'; % <-Motorischer Cortex r |
|
35 |
+ |
|
36 |
+ m.roiNameMap = java.util.HashMap; |
|
37 |
+ for roi = 1:size(m.roi_name,2) |
|
38 |
+ m.roiNameMap.put(m.roi_name{roi},roi); |
|
39 |
+ end |
|
40 |
+ |
|
41 |
+ |
|
42 |
+ % Koordinaten aller Probanden A von den ROIS B: rois{A}(B,[x y z in mm]) |
|
43 |
+ m.coordinate{1}(1,:) = [-18, -78, 53]; |
|
44 |
+ m.coordinate{1}(2,:) = [12, -69, 46]; |
|
45 |
+ m.coordinate{1}(3,:) = [-21, -12, 49]; |
|
46 |
+ m.coordinate{1}(4,:) = [30, -12, 53]; |
|
47 |
+ m.coordinate{1}(5,:) = [-30, -51, 39]; |
|
48 |
+ m.coordinate{1}(6,:) = [ 33, -60, 49]; |
|
49 |
+ m.coordinate{1}(7,:) = [ -9, 6, 46]; |
|
50 |
+ m.coordinate{1}(8,:) = [-27 27 48]; |
|
51 |
+ m.coordinate{1}(9,:) = [-6, -90, -7]; |
|
52 |
+ m.coordinate{1}(10,:) = [12, -90, -4]; |
|
53 |
+ m.coordinate{1}(11,:) = [-57, -24, 49]; |
|
54 |
+ m.coordinate{1}(12,:) = [42, -24, 60]; |
|
55 |
+ m.coordinate{2}(1,:) = [-9, -72, 56]; |
|
56 |
+ m.coordinate{2}(2,:) = [15, -72, 60]; |
|
57 |
+ m.coordinate{2}(3,:) = [-30, -9, 53]; |
|
58 |
+ m.coordinate{2}(4,:) = [ 30, -9, 49]; |
|
59 |
+ m.coordinate{2}(5,:) = [-42 -36 39]; |
|
60 |
+ m.coordinate{2}(6,:) = [30 -36 42]; |
|
61 |
+ m.coordinate{2}(7,:) = [ -3, 6, 53]; |
|
62 |
+ m.coordinate{2}(8,:) = [-27 30 28]; |
|
63 |
+ m.coordinate{2}(9,:) = [-6, -81, -7]; |
|
64 |
+ m.coordinate{2}(10,:) = [9, -78, -7]; |
|
65 |
+ m.coordinate{2}(11,:) = [-51, -24, 60]; |
|
66 |
+ m.coordinate{2}(12,:) = [48, -21, 63]; |
|
67 |
+ m.coordinate{3}(1,:) = [-15, -72, 60]; |
|
68 |
+ m.coordinate{3}(2,:) = [15, -66, 63]; |
|
69 |
+ m.coordinate{3}(3,:) = [-27, -12, 56]; |
|
70 |
+ m.coordinate{3}(4,:) = [24 -15 53]; |
|
71 |
+ m.coordinate{3}(5,:) = [-36 -36 42]; |
|
72 |
+ m.coordinate{3}(6,:) = [30 -39 35]; |
|
73 |
+ m.coordinate{3}(7,:) = [-9, 3, 53]; |
|
74 |
+ m.coordinate{3}(8,:) = [-30 30 28]; |
|
75 |
+ m.coordinate{3}(9,:) = [-3, -90, 4]; |
|
76 |
+ m.coordinate{3}(10,:) = [15, -99, 14]; |
|
77 |
+ m.coordinate{3}(11,:) = [-27, -27, 74]; |
|
78 |
+ m.coordinate{3}(12,:) = [36, -27, 70]; |
|
79 |
+ m.coordinate{4}(1,:) = [-21, -69, 63]; |
|
80 |
+ m.coordinate{4}(2,:) = [21, -69, 63]; |
|
81 |
+ m.coordinate{4}(3,:) = [-33 -12 53]; |
|
82 |
+ m.coordinate{4}(4,:) = [12 -9 60]; |
|
83 |
+ m.coordinate{4}(5,:) = [-33 -35 46]; |
|
84 |
+ m.coordinate{4}(6,:) = [42 -36 39]; |
|
85 |
+ m.coordinate{4}(7,:) = [-3 0 49]; |
|
86 |
+ m.coordinate{4}(8,:) = [-33 33 28]; |
|
87 |
+ m.coordinate{4}(9,:) = [-3, -90, -7]; |
|
88 |
+ m.coordinate{4}(10,:) = [9, -81, -7]; |
|
89 |
+ m.coordinate{4}(11,:) = [-39, -27, 53]; |
|
90 |
+ m.coordinate{4}(12,:) = [51, -24, 60]; |
|
91 |
+ m.coordinate{5}(1,:) = [-12 -66 63]; |
|
92 |
+ m.coordinate{5}(2,:) = [12, -75, 60]; |
|
93 |
+ m.coordinate{5}(3,:) = [-24, -12, 53]; |
|
94 |
+ m.coordinate{5}(4,:) = [27, -9, 60]; |
|
95 |
+ m.coordinate{5}(5,:) = [-42 -42 35]; |
|
96 |
+ m.coordinate{5}(6,:) = [33 -48 35]; |
|
97 |
+ m.coordinate{5}(7,:) = [ -3, 0, 49]; |
|
98 |
+ m.coordinate{5}(8,:) = [-36 33 28]; |
|
99 |
+ m.coordinate{5}(9,:) = [-15, -93, -4]; |
|
100 |
+ m.coordinate{5}(10,:) = [15, -90, 4]; |
|
101 |
+ m.coordinate{5}(11,:) = [-39, -33, 67]; |
|
102 |
+ m.coordinate{5}(12,:) = [27, -18, 74]; |
|
103 |
+ m.coordinate{6}(1,:) = [-21, -69, 60]; |
|
104 |
+ m.coordinate{6}(2,:) = [9, -72, 63]; |
|
105 |
+ m.coordinate{6}(3,:) = [-24 -12 53]; |
|
106 |
+ m.coordinate{6}(4,:) = [32 -12 56]; |
|
107 |
+ m.coordinate{6}(5,:) = [-36 -39 35]; |
|
108 |
+ m.coordinate{6}(6,:) = [42 -33 46]; |
|
109 |
+ m.coordinate{6}(7,:) = [-6 3 49]; |
|
110 |
+ m.coordinate{6}(8,:) = [-36 33 28]; |
|
111 |
+ m.coordinate{6}(9,:) = [-12, -99, 0]; |
|
112 |
+ m.coordinate{6}(10,:) = [9, -96, -7]; |
|
113 |
+ m.coordinate{6}(11,:) = [-48, -27, 60]; |
|
114 |
+ m.coordinate{6}(12,:) = [33, -33, 60]; |
|
115 |
+ m.coordinate{7}(1,:) = [-21, -60, 56]; |
|
116 |
+ m.coordinate{7}(2,:) = [12, -69, 60]; |
|
117 |
+ m.coordinate{7}(3,:) = [-24, -12, 49]; |
|
118 |
+ m.coordinate{7}(4,:) = [24, -6, 49]; |
|
119 |
+ m.coordinate{7}(5,:) = [-33 -45 46]; |
|
120 |
+ m.coordinate{7}(6,:) = [30, -51, 49]; |
|
121 |
+ m.coordinate{7}(7,:) = [0, 9, 42]; |
|
122 |
+ m.coordinate{7}(8,:) = [-30 36 35]; |
|
123 |
+ m.coordinate{7}(9,:) = [-3, -84, -4]; |
|
124 |
+ m.coordinate{7}(10,:) = [18, -87, -7]; |
|
125 |
+ m.coordinate{7}(11,:) = [-36, -30, 63]; |
|
126 |
+ m.coordinate{7}(12,:) = [42, -27, 60]; |
|
127 |
+ m.coordinate{8}(1,:) = [-27, -63, 53]; |
|
128 |
+ m.coordinate{8}(2,:) = [18, -66, 56]; |
|
129 |
+ m.coordinate{8}(3,:) = [-21, -6, 56]; |
|
130 |
+ m.coordinate{8}(4,:) = [27 -6 53]; |
|
131 |
+ m.coordinate{8}(5,:) = [-36, -51, 49]; |
|
132 |
+ m.coordinate{8}(6,:) = [45, -39, 53]; |
|
133 |
+ m.coordinate{8}(7,:) = [-9, 9, 53]; |
|
134 |
+ m.coordinate{8}(8,:) = [-36 24 25]; |
|
135 |
+ m.coordinate{8}(9,:) = [0, -90, 4]; |
|
136 |
+ m.coordinate{8}(10,:) = [0, -90, 4]; |
|
137 |
+ m.coordinate{8}(11,:) = [-42, -27, 67]; |
|
138 |
+ m.coordinate{8}(12,:) = [51, -27, 63]; |
|
139 |
+ |
|
140 |
+ m = class(m,'SubjectRoiMapping'); |
|
141 |
+ |
|
142 |
+elseif isa(argv,'SubjectRoiMapping') % copy |
|
143 |
+ m = argv; |
|
144 |
+ |
|
145 |
+else |
|
146 |
+error('SubjectRoiMapping:Constructor:NoSuchConstructor','There is no constructor matching your argv'); |
|
147 |
+end |
|
0 | 148 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,18 @@ |
1 |
+function coord = getCoordinate(mapping,subject,roi) |
|
2 |
+% getCoordinate(SubjectRoiMapping,subjectID,roiID) returns the coordinate |
|
3 |
+% for the given subject and the given roi. Both subjectID and roiID can |
|
4 |
+% either be a valid Name (see get[Sunject|Roi]NameCellList(mapping) ) or |
|
5 |
+% the corresponding numerical ID. |
|
6 |
+ |
|
7 |
+if ischar(subject) && ischar(roi) |
|
8 |
+ coord = getCoordinate(mapping,getSubjectID(mapping,subject),getRoiID(mapping,roi)); |
|
9 |
+elseif isnumeric(subject) && ischar(roi) |
|
10 |
+ coord = getCoordinate(mapping,subject,getRoiID(mapping,roi)); |
|
11 |
+elseif ischar(subject) && isnumeric(roi) |
|
12 |
+ coord = getCoordinate(mapping,getSubjectID(mapping,subject),roi); |
|
13 |
+elseif isnumeric(subject) && isnumeric(roi) |
|
14 |
+ coord = mapping.coordinate{subject}(roi,:); |
|
15 |
+else |
|
16 |
+ error('SubjectRoiMapping:getCoordinate:BadArguments','Subject has to be a valid subject identifier (either char or integer)'); |
|
17 |
+end |
|
18 |
+ |
... | ... |
@@ -0,0 +1,7 @@ |
1 |
+function id = getRoiID(mapping,roiName) |
|
2 |
+if mapping.roiNameMap.containsKey(roiName) |
|
3 |
+ id = mapping.roiNameMap.get(roiName); |
|
4 |
+else |
|
5 |
+ error('SubjectRoiMapping:getRoiID:noSuchName','this Mapping does not contain a ROI ''%s''',roiName); |
|
6 |
+end |
|
7 |
+end |
|
0 | 8 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,7 @@ |
1 |
+function id = getSubjectID(mapping,subjectName) |
|
2 |
+if mapping.subjectNameMap.containsKey(subjectName) |
|
3 |
+ id = mapping.subjectNameMap.get(subjectName); |
|
4 |
+else |
|
5 |
+ error('SubjectRoiMapping:getSubjectID:noSuchName','this Mapping does not contain a Name ''%s''',subjectName); |
|
6 |
+end |
|
7 |
+end |
|
0 | 8 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,20 @@ |
1 |
+function vValue = VoxelValueAtTimepoint (coordinate, timepoint) |
|
2 |
+% single Voxel for single coordinate |
|
3 |
+ |
|
4 |
+if(size(coordinate,2)>1) |
|
5 |
+ error('VoxelValueAtTimepoint:CoordinateError','only single Coordinate permitted.'); |
|
6 |
+end |
|
7 |
+ |
|
8 |
+imageNumber = timePointToImageNumber(timepoint, 's'); |
|
9 |
+V = evalin('base','SPM.xY.VY'); % Memory Mapped Images |
|
10 |
+center = round(inv(V(imageNumber).mat)*[coordinate; 1]); |
|
11 |
+ |
|
12 |
+x = center(1,1); |
|
13 |
+y = center(2,1); |
|
14 |
+z = center(3,1); |
|
15 |
+ |
|
16 |
+vValue = spm_sample_vol(V(imageNumber), x, y, z, 0); |
|
17 |
+ |
|
18 |
+end |
|
19 |
+ |
|
20 |
+ |
... | ... |
@@ -0,0 +1,278 @@ |
1 |
+% function [decodePerformance rawTimecourse ] = calculateDecodePerformance(des,timeLineStart, timeLineEnd, decodeDuration, svmargs, conditionList, sessionList, voxelList, classList, labelMap,normalize) |
|
2 |
+function outputStruct = calculateDecodePerformance(inputStruct) |
|
3 |
+ |
|
4 |
+addpath 'libsvm-mat-2.88-1'; |
|
5 |
+ |
|
6 |
+outputStruct = struct; |
|
7 |
+ |
|
8 |
+des = inputStruct.des; |
|
9 |
+timeLineStart = inputStruct.frameShiftStart; |
|
10 |
+timeLineEnd = inputStruct.frameShiftEnd; |
|
11 |
+decodeDuration = inputStruct.decodeDuration; |
|
12 |
+svmargs = inputStruct.svmargs; |
|
13 |
+sessionList = inputStruct.sessionList; |
|
14 |
+voxelList = inputStruct.voxelList; |
|
15 |
+% classList = inputStruct.classList; |
|
16 |
+% labelMap = inputStruct.labelMap; |
|
17 |
+% normalize = inputStruct.normalize; |
|
18 |
+globalStart = inputStruct.psthStart; |
|
19 |
+globalEnd = inputStruct.psthEnd; |
|
20 |
+baselineStart = inputStruct.baselineStart; |
|
21 |
+baselineEnd = inputStruct.baselineEnd; |
|
22 |
+eventList = inputStruct.eventList; |
|
23 |
+ |
|
24 |
+ |
|
25 |
+minPerformance = inf; |
|
26 |
+maxPerformance = -inf; |
|
27 |
+ |
|
28 |
+ |
|
29 |
+ |
|
30 |
+ %Pro Voxel PSTH TIMELINE berechnen. |
|
31 |
+ % timeshift mit pst-timeline durchf�hren. |
|
32 |
+ % psth-timeline -25 bis +15 zu RES Onset. |
|
33 |
+ |
|
34 |
+% eventList = [9,11,13;10,12,14]; |
|
35 |
+% globalStart = -25; |
|
36 |
+% globalEnd = 15; |
|
37 |
+% baselineStart = -22; |
|
38 |
+% baselineEnd = -20; |
|
39 |
+ |
|
40 |
+ |
|
41 |
+ for voxel = 1:size(voxelList,1) % [[x;x],[y;y],[z;z]] |
|
42 |
+ extr = calculateImageData(voxelList(voxel,:),des); |
|
43 |
+ rawdata=cell2mat({extr.mean}); % Raw Data |
|
44 |
+ pst{voxel} = calculatePST(des,globalStart,baselineStart,baselineEnd,globalEnd,eventList,rawdata,sessionList); |
|
45 |
+ end |
|
46 |
+ |
|
47 |
+ decodePerformance = []; |
|
48 |
+ |
|
49 |
+ for timeShift = timeLineStart:1:timeLineEnd |
|
50 |
+ frameStart = floor(-globalStart+1+timeShift - 0.5*decodeDuration); |
|
51 |
+ frameEnd = min(ceil(frameStart+decodeDuration + 0.5*decodeDuration),-globalStart+globalEnd); |
|
52 |
+ |
|
53 |
+ tmp =[]; |
|
54 |
+ anyvoxel = 1; |
|
55 |
+ for label = 1:size(pst{1,anyvoxel},2) |
|
56 |
+ for dp = 1:size(pst{1,anyvoxel}{1,label},1) % data point |
|
57 |
+ row = label; |
|
58 |
+ for voxel = 1:size(pst,2) |
|
59 |
+ row = [row, pst{1,voxel}{1,label}(dp,frameStart:frameEnd)]; % label,value,value |
|
60 |
+ end |
|
61 |
+ tmp = [tmp; row]; |
|
62 |
+ end |
|
63 |
+ end |
|
64 |
+ |
|
65 |
+ svmdata = tmp(:,2:size(tmp,2)); |
|
66 |
+ svmlabel = tmp(:,1); |
|
67 |
+ performance = svmtrain(svmlabel, svmdata, svmargs); |
|
68 |
+ |
|
69 |
+ minPerformance = min(minPerformance,performance); |
|
70 |
+ maxPerformance = max(maxPerformance,performance); |
|
71 |
+ |
|
72 |
+ decodePerformance = [decodePerformance; performance]; |
|
73 |
+ end |
|
74 |
+ |
|
75 |
+ outputStruct.decodePerformance = decodePerformance; |
|
76 |
+ outputStruct.svmdata = svmdata; |
|
77 |
+ outputStruct.svmlabel = svmlabel; |
|
78 |
+ outputStruct.rawTimeCourse = pst; |
|
79 |
+ outputStruct.minPerformance = minPerformance; |
|
80 |
+ outputStruct.maxPerformance = maxPerformance; |
|
81 |
+ |
|
82 |
+% display(sprintf('Min CrossVal Accuracy: %g%% \t Max CrossVal Accuracy: %g%%',minPerformance,maxPerformance)); |
|
83 |
+end |
|
84 |
+ |
|
85 |
+ |
|
86 |
+function extr = calculateImageData(voxelList,des) |
|
87 |
+ |
|
88 |
+dtype='PSTH'; |
|
89 |
+ |
|
90 |
+switch dtype |
|
91 |
+ case 'PSTH' |
|
92 |
+ V=des.xY.VY; |
|
93 |
+ case 'betas' |
|
94 |
+ V=des.Vbeta; |
|
95 |
+end; |
|
96 |
+% for z=1:length(V) % Change Drive Letter! |
|
97 |
+% V(z).fname(1)='E'; |
|
98 |
+% end; |
|
99 |
+ |
|
100 |
+% rad = 0; % one voxel |
|
101 |
+% opt = 1; % xyz coordinates [mm] |
|
102 |
+ |
|
103 |
+ |
|
104 |
+vox = voxelList; |
|
105 |
+nRoi = size(vox,1); |
|
106 |
+ |
|
107 |
+nImg = numel(V); |
|
108 |
+ |
|
109 |
+for k=1:nImg |
|
110 |
+ extr(k) = struct(... |
|
111 |
+ 'val', repmat(NaN, [1 nRoi]),... |
|
112 |
+ 'mean', repmat(NaN, [1 nRoi]),... |
|
113 |
+ 'sum', repmat(NaN, [1 nRoi]),... |
|
114 |
+ 'nvx', repmat(NaN, [1 nRoi]),... |
|
115 |
+ 'posmm', repmat(NaN, [3 nRoi]),... |
|
116 |
+ 'posvx', repmat(NaN, [3 nRoi])); |
|
117 |
+ |
|
118 |
+ roicenter = round(inv(V(k).mat)*[vox, ones(nRoi,1)]'); |
|
119 |
+ |
|
120 |
+ for l = 1:nRoi |
|
121 |
+ |
|
122 |
+% if rad==0 |
|
123 |
+ x = roicenter(1,l); |
|
124 |
+ y = roicenter(2,l); |
|
125 |
+ z = roicenter(3,l); |
|
126 |
+% else |
|
127 |
+% tmp = spm_imatrix(V(k).mat); |
|
128 |
+% vdim = tmp(7:9); |
|
129 |
+% vxrad = ceil((rad*ones(1,3))./(ones(nRoi,1)*vdim))'; |
|
130 |
+% [x y z] = ndgrid(-vxrad(1,l):sign(vdim(1)):vxrad(1,l), ... |
|
131 |
+% -vxrad(2,l):sign(vdim(2)):vxrad(2,l), ... |
|
132 |
+% -vxrad(3,l):sign(vdim(3)):vxrad(3,l)); |
|
133 |
+% sel = (x./vxrad(1,l)).^2 + (y./vxrad(2,l)).^2 + ... |
|
134 |
+% (z./vxrad(3,l)).^2 <= 1; |
|
135 |
+% x = roicenter(1,l)+x(sel(:)); |
|
136 |
+% y = roicenter(2,l)+y(sel(:)); |
|
137 |
+% z = roicenter(3,l)+z(sel(:)); |
|
138 |
+% end; |
|
139 |
+ dat = spm_sample_vol(V(k), x, y, z,0); |
|
140 |
+ [maxv maxi] = max(dat); |
|
141 |
+ tmp = V(k).mat*[x(maxi); y(maxi); z(maxi);1]; % Max Pos |
|
142 |
+ extr(k).val(l) = maxv; |
|
143 |
+ extr(k).sum(l) = sum(dat); |
|
144 |
+ extr(k).mean(l) = nanmean(dat); |
|
145 |
+ extr(k).nvx(l) = numel(dat); |
|
146 |
+ extr(k).posmm(:,l) = tmp(1:3); |
|
147 |
+ extr(k).posvx(:,l) = [x(maxi); y(maxi); z(maxi)]; % Max Pos |
|
148 |
+ end; |
|
149 |
+ |
|
150 |
+end; |
|
151 |
+end |
|
152 |
+ |
|
153 |
+% disp(sprintf('Extracted at %.1f %.1f %.1f [xyz(mm)], average of %i voxel(s) [%.1fmm radius Sphere]',vox,length(x),rad)); |
|
154 |
+ |
|
155 |
+function pst = calculatePST(des,globalStart,baselineStart,baselineEnd,globalEnd,eventList,data,sessionList) |
|
156 |
+ bstart = baselineStart; |
|
157 |
+ bend = baselineEnd; |
|
158 |
+ edur = 12; |
|
159 |
+ pre = globalStart; |
|
160 |
+ post = globalEnd; |
|
161 |
+ res = 1; |
|
162 |
+ |
|
163 |
+ normz = 'file'; |
|
164 |
+ pm = 0; |
|
165 |
+ |
|
166 |
+ lsess = getNumberOfScans(des); |
|
167 |
+ nSessions = getNumberOfSessions(des); |
|
168 |
+ tr = 2; |
|
169 |
+ |
|
170 |
+ [evntrow evntcol]=size(eventList); |
|
171 |
+ |
|
172 |
+ |
|
173 |
+ hsec=str2num(des.xsDes.High_pass_Filter(8:end-3)); % Highpass filter [sec] from SPM.mat |
|
174 |
+ |
|
175 |
+ if strcmp(des.xBF.UNITS,'secs') |
|
176 |
+ unitsecs=1; |
|
177 |
+ end; |
|
178 |
+ |
|
179 |
+ nScansPerSession=getNumberOfScans(des); |
|
180 |
+ %stime=[0:tr:max(nScansPerSession)*tr+post-tr]; % Stimulus time for raw data plot |
|
181 |
+ stime=0:tr:max(nScansPerSession)*tr+round(post/tr)*tr-tr; % Stimulus time for raw data plot |
|
182 |
+ |
|
183 |
+ |
|
184 |
+ |
|
185 |
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
186 |
+ % RUN |
|
187 |
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
188 |
+ |
|
189 |
+ |
|
190 |
+ % Digital Highpass |
|
191 |
+ Rp=0.5; |
|
192 |
+ Rs=20; |
|
193 |
+ NO=1; |
|
194 |
+ Wp=1/((1/2/tr)/(1/hsec)); |
|
195 |
+ [B, A] = ellip(NO,Rp,Rs,Wp,'high'); |
|
196 |
+ |
|
197 |
+ sdata(1:max(nScansPerSession)+round(post/tr),1:nSessions)=nan; % Open Data Matrix |
|
198 |
+ for z=1:nSessions % Fill Data Matrix sessionwise |
|
199 |
+ sdata(1:nScansPerSession(z),z)=data(sum(nScansPerSession(1:z))-nScansPerSession(z)+1:sum(nScansPerSession(1:z)))'; |
|
200 |
+ end; |
|
201 |
+% usdata=sdata; % Keep unfiltered data |
|
202 |
+ |
|
203 |
+ sdatamean=nanmean(nanmean(sdata(:,:))); |
|
204 |
+ for z=1:nSessions |
|
205 |
+% X(:,z)=[1:1:max(nScansPerSession)]'; % #Volume |
|
206 |
+ sdata(1:nScansPerSession(z),z)=filtfilt(B,A,sdata(1:nScansPerSession(z),z)); %Filter Data (Highpass) |
|
207 |
+ end; |
|
208 |
+ sdata=sdata+sdatamean; |
|
209 |
+ |
|
210 |
+ |
|
211 |
+ %%%%Parametric Modulation Modus%%%% |
|
212 |
+ if pm %Find Parameters for Event of Interest |
|
213 |
+ [imods modss mods erow evntrow eventList] = getParametricMappingEvents(eventList,evntrow,des,pmf); |
|
214 |
+ end; |
|
215 |
+ %%%%PM%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
216 |
+ |
|
217 |
+ |
|
218 |
+ for zr=1:evntrow |
|
219 |
+ n{zr}=0; |
|
220 |
+ nn{zr}=0; |
|
221 |
+ nnn{zr}=0; |
|
222 |
+ sstart{zr}=1; |
|
223 |
+ end; |
|
224 |
+ |
|
225 |
+ |
|
226 |
+ sesst0=0; |
|
227 |
+ for sessionID=sessionList |
|
228 |
+ if sessionID>1 |
|
229 |
+ sesst0(sessionID)=sum(lsess(1:sessionID-1))*tr; |
|
230 |
+ end; |
|
231 |
+ for zr=1:evntrow %LABEL NUMBER, EVENT GROUP |
|
232 |
+ sstart{zr}=n{zr}+1; |
|
233 |
+ for ze=1:evntcol % EVENT INDEX in EventList |
|
234 |
+ if ze==1 || (ze>1 && eventList(zr,ze)~=eventList(zr,ze-1)) |
|
235 |
+ for zz=1:length(des.Sess(sessionID).U(eventList(zr,ze)).ons) % EVENT REPETITION NUMBER |
|
236 |
+ if ~unitsecs |
|
237 |
+ des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)=(des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)-1)*tr; |
|
238 |
+ des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)=(des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)-1)*tr; |
|
239 |
+ end; |
|
240 |
+ |
|
241 |
+ nnn{zr}=nnn{zr}+1; % INFO for rawdataplot start |
|
242 |
+ if des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)<edur |
|
243 |
+ mev{zr}(nnn{zr},1:2)=[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+sesst0(sessionID) edur]; % modeled event [onset length] |
|
244 |
+ else |
|
245 |
+ mev{zr}(nnn{zr},1:2)=[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+sesst0(sessionID) des.Sess(sessionID).U(eventList(zr,ze)).dur(zz)]; |
|
246 |
+ end; % INFO for rawdataplot end |
|
247 |
+ |
|
248 |
+ n{zr}=n{zr}+1; |
|
249 |
+ pst{zr}(n{zr},:)=interp1(stime,sdata(:,sessionID),[des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+pre:res:des.Sess(sessionID).U(eventList(zr,ze)).ons(zz)+post],'linear'); |
|
250 |
+ if strcmp(normz,'epoc') |
|
251 |
+ bline=nanmean(pst{zr}(n{zr},round(-pre/res+(bstart)/res+1):round(-pre/res+(bend)/res+1))); |
|
252 |
+ if isnan(bline) |
|
253 |
+ pst{zr}(n{zr},1:-pre/res+post/res+1)=nan; |
|
254 |
+ else |
|
255 |
+% nn{zr}=nn{zr}+1; |
|
256 |
+ pst{zr}(n{zr},:)=(pst{zr}(n{zr},:)-bline)/bline*100; % 'epoch-based' normalization |
|
257 |
+ end; |
|
258 |
+ end; |
|
259 |
+ end; |
|
260 |
+ end; |
|
261 |
+ end; |
|
262 |
+ if ~strcmp(normz,'epoc') |
|
263 |
+ bline(zr)=nanmean(nanmean(pst{zr}(sstart{zr}:n{zr},-pre/res+(bstart)/res+1:-pre/res+(bend)/res+1))); |
|
264 |
+ bstd(zr)=nanmean(nanstd(pst{zr}(sstart{zr}:n{zr},-pre/res+(bstart)/res+1:-pre/res+(bend)/res+1))); |
|
265 |
+ nn{zr}=n{zr}; |
|
266 |
+ end; |
|
267 |
+ end; |
|
268 |
+ if strcmp(normz,'filz') |
|
269 |
+ for zr=1:evntrow |
|
270 |
+ pst{zr}(sstart{zr}:n{zr},:)=(pst{zr}(sstart{zr}:n{zr},:)-mean(bline))/mean(bstd); % session-based z-score normalization |
|
271 |
+ end; |
|
272 |
+ elseif strcmp(normz,'file') |
|
273 |
+ for zr=1:evntrow |
|
274 |
+ pst{zr}(sstart{zr}:n{zr},:)=(pst{zr}(sstart{zr}:n{zr},:)-mean(bline))/mean(bline)*100; % session-based normalization |
|
275 |
+ end; |
|
276 |
+ end; |
|
277 |
+ end; |
|
278 |
+end |
... | ... |
@@ -0,0 +1,138 @@ |
1 |
+function classify(action) |
|
2 |
+ |
|
3 |
+if ~exist('action','var') |
|
4 |
+ action='no action'; |
|
5 |
+end |
|
6 |
+ |
|
7 |
+ switch(action) |
|
8 |
+ case 'clear' |
|
9 |
+ evalin('base','clear map lm SPM classList dataTimeLine decodeTable labelTimeLine svmopts trialProtocol voxelList xTimeEnd xTimeStart xTimeWindow'); |
|
10 |
+ |
|
11 |
+ case 'decode' |
|
12 |
+ |
|
13 |
+ |
|
14 |
+ |
|
15 |
+ display('loading SPM.mat'); |
|
16 |
+ SubjectID = 'JZ006'; |
|
17 |
+% SubjectID = 'AI020'; |
|
18 |
+% SubjectID = 'HG027'; |
|
19 |
+ spm = load(fullfile('D:\Analyze\Choice\24pilot',SubjectID,'results\SPM.mat')); |
|
20 |
+ |
|
21 |
+ display('done.'); |
|
22 |
+ |
|
23 |
+ |
|
24 |
+ |
|
25 |
+ |
|
26 |
+ map = SubjectRoiMapping; |
|
27 |
+ |
|
28 |
+ voxelList = [... |
|
29 |
+ getCoordinate(map,SubjectID,'SPL l')+[0,0,0];... |
|
30 |
+ getCoordinate(map,SubjectID,'SPL l')+[1,0,0];... |
|
31 |
+ getCoordinate(map,SubjectID,'SPL l')+[-1,0,0];... |
|
32 |
+ getCoordinate(map,SubjectID,'SPL l')+[0,1,0];... |
|
33 |
+ getCoordinate(map,SubjectID,'SPL l')+[0,-1,0];... |
|
34 |
+ getCoordinate(map,SubjectID,'SPL l')+[0,0,1];... |
|
35 |
+ getCoordinate(map,SubjectID,'SPL l')+[0,0,-1];... |
|
36 |
+ getCoordinate(map,SubjectID,'SPL r')+[0,0,0];... |
|
37 |
+ getCoordinate(map,SubjectID,'SPL r')+[1,0,0];... |
|
38 |
+ getCoordinate(map,SubjectID,'SPL r')+[-1,0,0];... |
|
39 |
+ getCoordinate(map,SubjectID,'SPL r')+[0,1,0];... |
|
40 |
+ getCoordinate(map,SubjectID,'SPL r')+[0,-1,0];... |
|
41 |
+ getCoordinate(map,SubjectID,'SPL r')+[0,0,1];... |
|
42 |
+ getCoordinate(map,SubjectID,'SPL r')+[0,0,-1];... |
|
43 |
+ getCoordinate(map,SubjectID,'M1 r')+[0,0,0];... |
|
44 |
+ getCoordinate(map,SubjectID,'M1 l')+[0,0,0];... |
|
45 |
+ ]; |
|
46 |
+ |
|
47 |
+ |
|
48 |
+ params = struct; |
|
49 |
+ params.nClasses = 2; |
|
50 |
+ |
|
51 |
+ assignin('base','params',params); |
|
52 |
+ %% calculate |
|
53 |
+ display('calculating cross-validation performance time-shift'); |
|
54 |
+ calculateParams = struct; |
|
55 |
+ |
|
56 |
+ calculateParams.des = spm.SPM; |
|
57 |
+ calculateParams.frameShiftStart = -20; |
|
58 |
+ calculateParams.frameShiftEnd = 15; |
|
59 |
+ calculateParams.decodeDuration = 1; |
|
60 |
+ calculateParams.svmargs = '-t 0 -s 0 -v 6'; |
|
61 |
+ calculateParams.sessionList = 1:3; |
|
62 |
+ calculateParams.voxelList = voxelList; |
|
63 |
+ calculateParams.classList = {'<','>'}; |
|
64 |
+ calculateParams.labelMap = LabelMap({'<','>','<+<','>+>','<+>','>+<'},{-2,-1,1,2,3,4}); |
|
65 |
+ calculateParams.psthStart = -25; |
|
66 |
+ calculateParams.psthEnd = 20; |
|
67 |
+ calculateParams.baselineStart = -22; |
|
68 |
+ calculateParams.baselineEnd = -20; |
|
69 |
+ calculateParams.eventList = [9,11,13; 10,12,14]; |
|
70 |
+ |
|
71 |
+ assignin('base','calculateParams',calculateParams); |
|
72 |
+ |
|
73 |
+% [decodeTable rawTimeCourse] = calculateDecodePerformance(spm,params.frameShiftStart,params.frameShiftEnd,params.xTimeWindow,params.svmopts,1:4,params.sessionList,params.voxelList,params.classList,params.labelMap,params.normalize); |
|
74 |
+ decode = calculateDecodePerformance(calculateParams); |
|
75 |
+ display(sprintf('Min CrossVal Accuracy: %g%% \t Max CrossVal Accuracy: %g%%',decode.minPerformance,decode.maxPerformance)); |
|
76 |
+ |
|
77 |
+ assignin('base','decode',decode); |
|
78 |
+ |
|
79 |
+ display('Finished calculations.'); |
|
80 |
+ display('Plotting.'); |
|
81 |
+ |
|
82 |
+ plotParams = struct; |
|
83 |
+ plotParams.psthStart = calculateParams.psthStart; |
|
84 |
+ plotParams.psthEnd = calculateParams.psthEnd; |
|
85 |
+ plotParams.nClasses = length(calculateParams.classList); |
|
86 |
+ plotParams.frameShiftStart = calculateParams.frameShiftStart; |
|
87 |
+ plotParams.frameShiftEnd = calculateParams.frameShiftEnd; |
|
88 |
+ plotParams.decodePerformance = decode.decodePerformance; |
|
89 |
+ plotParams.rawTimeCourse = decode.rawTimeCourse; |
|
90 |
+ plotParams.SubjectID = SubjectID; |
|
91 |
+ |
|
92 |
+ assignin('base','plotParams',plotParams); |
|
93 |
+% plotDecodePerformance(params.psthStart,params.psthEnd,params.nClasses,decode.decodeTable,params.frameShiftStart,params.frameShiftEnd,decode.rawTimeCourse); |
|
94 |
+ plotDecodePerformance(plotParams); |
|
95 |
+ |
|
96 |
+ case 'gen' |
|
97 |
+ center = '[-39 -33 67]'; |
|
98 |
+ sessionList = '1:3'; |
|
99 |
+ conditionList = '1:2'; |
|
100 |
+ radius = 3; |
|
101 |
+ normalize = 1; |
|
102 |
+ |
|
103 |
+ cmd=sprintf(... |
|
104 |
+ '[label data] = generateDataMatrix(generateVoxelList(%s,%d), generateTrialProtocol(%s,%s),%d);',... |
|
105 |
+ center,radius,sessionList,conditionList,normalize); |
|
106 |
+ |
|
107 |
+ % assignin('base','label',label); |
|
108 |
+ % assignin('base','data',data); |
|
109 |
+ |
|
110 |
+ case 'norm' |
|
111 |
+ cmd = ['for i=1:size(data,2)'... |
|
112 |
+ 'data(:,i)=data(:,i)/std(data(:,i));'... |
|
113 |
+ 'end;']; |
|
114 |
+ |
|
115 |
+ case 'xtrain' |
|
116 |
+ svmargs = '-t 0'; %linear kernel |
|
117 |
+ svmargs = [svmargs '-v 4']; |
|
118 |
+ |
|
119 |
+ cmd=sprintf('model = svmtrain(label,data,''%s'')',svmargs); |
|
120 |
+ |
|
121 |
+ case 'train' |
|
122 |
+ svmargs = '-t 0'; %linear kernel |
|
123 |
+% svmargs = [svmargs '-v 4']; |
|
124 |
+ |
|
125 |
+ cmd=sprintf('model = svmtrain(label,data,%s)',svmargs); |
|
126 |
+ |
|
127 |
+ case 'pred' |
|
128 |
+ cmd = '[predicted_label, accuracy, decision_values] = svmpredict(label, data, model);'; |
|
129 |
+ |
|
130 |
+ otherwise |
|
131 |
+ display('give action command: clear load gen (norm) xtrain train pred'); |
|
132 |
+ end |
|
133 |
+ |
|
134 |
+ if exist('cmd','var') |
|
135 |
+ evalin('base',cmd); |
|
136 |
+ end |
|
137 |
+ |
|
138 |
+end |
|
0 | 139 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,20 @@ |
1 |
+function voxellist = generateVoxelList(center, radius) |
|
2 |
+% cx = ROICenter(1); |
|
3 |
+% cy = ROICenter(2); |
|
4 |
+% cz = ROICenter(3); |
|
5 |
+ |
|
6 |
+ voxellist = []; |
|
7 |
+ |
|
8 |
+ cx = center(1); |
|
9 |
+ cy = center(2); |
|
10 |
+ cz = center(3); |
|
11 |
+ |
|
12 |
+ for z=cz-radius+1:cz+radius-1 |
|
13 |
+ for y=(cy-radius+1):(cy+radius-1) |
|
14 |
+ for x=(cx-radius+1):(cx+radius-1) |
|
15 |
+ voxellist = [voxellist [x;y;z]]; |
|
16 |
+ end |
|
17 |
+ end |
|
18 |
+ end |
|
19 |
+ |
|
20 |
+end |
|
0 | 21 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,10 @@ |
1 |
+function duration = getDuration(session, condition, repetition) |
|
2 |
+%session : the session number. |
|
3 |
+%condition : the condition intrested in (CUE1,CUE2,...) |
|
4 |
+%repetition : the repetition number; same event, different time ;) |
|
5 |
+ |
|
6 |
+cmd = sprintf('SPM.Sess(%d,%d).U(%d,%d).dur(%d)',1,session,1,condition,repetition); |
|
7 |
+ |
|
8 |
+duration = evalin('base',cmd); |
|
9 |
+ |
|
10 |
+end |
|
0 | 11 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,11 @@ |
1 |
+function onset = getOnset(session,condition,repetition) |
|
2 |
+ |
|
3 |
+%session : the session number. |
|
4 |
+%condition : the condition intrested in (CUE1,CUE2,...) |
|
5 |
+%repetition : the repetition number; same event, different time ;) |
|
6 |
+ |
|
7 |
+cmd = sprintf('SPM.Sess(%d,%d).U(%d,%d).ons(%d)',1,session,1,condition,repetition); |
|
8 |
+ |
|
9 |
+onset = evalin('base',cmd); |
|
10 |
+ |
|
11 |
+end |
|
0 | 12 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,38 @@ |
1 |
+import java.util.HashMap; |
|
2 |
+ |
|
3 |
+class LabelMap { |
|
4 |
+ |
|
5 |
+private HashMap<String,Double> labelToValue; |
|
6 |
+private HashMap<Double,String> valueToLabel; |
|
7 |
+ |
|
8 |
+public LabelMap(){ |
|
9 |
+ this(2); |
|
10 |
+} |
|
11 |
+ |
|
12 |
+public LabelMap(int numberOfLabels){ |
|
13 |
+ labelToValue = new HashMap<String,Double>(numberOfLabels+1,1); |
|
14 |
+ valueToLabel = new HashMap<Double,String>(numberOfLabels+1,1); |
|
15 |
+} |
|
16 |
+ |
|
17 |
+public void add(String label, double value){ |
|
18 |
+ labelToValue.put(label,value); |
|
19 |
+ valueToLabel.put(value,label); |
|
20 |
+} |
|
21 |
+ |
|
22 |
+public String getLabel(double value){ |
|
23 |
+ return valueToLabel.get(value); |
|
24 |
+} |
|
25 |
+ |
|
26 |
+public Double getValue(String label){ |
|
27 |
+ return labelToValue.get(label); |
|
28 |
+} |
|
29 |
+ |
|
30 |
+public String toString(){ |
|
31 |
+ StringBuffer s = new StringBuffer("LabelMap: \n"); |
|
32 |
+ for( String key : labelToValue.keySet()){ |
|
33 |
+ s.append(key+'\t'+labelToValue.get(key)+"\n"); |
|
34 |
+ } |
|
35 |
+ return s.toString(); |
|
36 |
+} |
|
37 |
+ |
|
38 |
+} |
|
0 | 39 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,14 @@ |
1 |
+function generateClassLabelValueMaps(filename) |
|
2 |
+ |
|
3 |
+if exist(filename,'file') |
|
4 |
+ vars = load(filename); |
|
5 |
+ clMap = vars.classLabelMap; |
|
6 |
+ nItems = size(clMap,1); |
|
7 |
+ lm = LabelMap(nItems); |
|
8 |
+ for item = 1:nItems |
|
9 |
+ label = clMap(item,1); |
|
10 |
+ value = cell2mat(clMap(item,2)); |
|
11 |
+ lm.add(label,value) |
|
12 |
+ end |
|
13 |
+ assignin('base','lm',lm); |
|
14 |
+end |
|
0 | 15 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,31 @@ |
1 |
+ |
|
2 |
+Copyright (c) 2000-2008 Chih-Chung Chang and Chih-Jen Lin |
|
3 |
+All rights reserved. |
|
4 |
+ |
|
5 |
+Redistribution and use in source and binary forms, with or without |
|
6 |
+modification, are permitted provided that the following conditions |
|
7 |
+are met: |
|
8 |
+ |
|
9 |
+1. Redistributions of source code must retain the above copyright |
|
10 |
+notice, this list of conditions and the following disclaimer. |
|
11 |
+ |
|
12 |
+2. Redistributions in binary form must reproduce the above copyright |
|
13 |
+notice, this list of conditions and the following disclaimer in the |
|
14 |
+documentation and/or other materials provided with the distribution. |
|
15 |
+ |
|
16 |
+3. Neither name of copyright holders nor the names of its contributors |
|
17 |
+may be used to endorse or promote products derived from this software |
|
18 |
+without specific prior written permission. |
|
19 |
+ |
|
20 |
+ |
|
21 |
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
22 |
+``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
23 |
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
24 |
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR |
|
25 |
+CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
26 |
+EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
27 |
+PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
28 |
+PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
|
29 |
+LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|
30 |
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
31 |
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
... | ... |
@@ -0,0 +1,47 @@ |
1 |
+# This Makefile is used under Linux |
|
2 |
+ |
|
3 |
+MATLABDIR ?= /usr/local/matlab |
|
4 |
+CXX ?= g++ |
|
5 |
+#CXX = g++-4.1 |
|
6 |
+CFLAGS = -Wall -O3 -fPIC -I$(MATLABDIR)/extern/include |
|
7 |
+ |
|
8 |
+MEX = $(MATLABDIR)/bin/mex |
|
9 |
+MEX_OPTION = CC\#$(CXX) CXX\#$(CXX) CFLAGS\#"$(CFLAGS)" CXXFLAGS\#"$(CFLAGS)" |
|
10 |
+# comment the following line if you use MATLAB on 32-bit computer |
|
11 |
+MEX_OPTION += -largeArrayDims |
|
12 |
+MEX_EXT = $(shell $(MATLABDIR)/bin/mexext) |
|
13 |
+ |
|
14 |
+OCTAVEDIR ?= /usr/include/octave |
|
15 |
+OCTAVE_MEX = env CC=$(CXX) mkoctfile |
|
16 |
+OCTAVE_MEX_OPTION = --mex |
|
17 |
+OCTAVE_MEX_EXT = mex |
|
18 |
+OCTAVE_CFLAGS = -Wall -O3 -fPIC -I$(OCTAVEDIR) |
|
19 |
+ |
|
20 |
+all: matlab |
|
21 |
+ |
|
22 |
+matlab: binary |
|
23 |
+ |
|
24 |
+octave: |
|
25 |
+ @make MEX="$(OCTAVE_MEX)" MEX_OPTION="$(OCTAVE_MEX_OPTION)" \ |
|
26 |
+ MEX_EXT="$(OCTAVE_MEX_EXT)" CFLAGS="$(OCTAVE_CFLAGS)" \ |
|
27 |
+ binary |
|
28 |
+ |
|
29 |
+binary: svmpredict.$(MEX_EXT) svmtrain.$(MEX_EXT) read_sparse.$(MEX_EXT) |
|
30 |
+ |
|
31 |
+svmpredict.$(MEX_EXT): svmpredict.c svm.h svm.o svm_model_matlab.o |
|
32 |
+ $(MEX) $(MEX_OPTION) svmpredict.c svm.o svm_model_matlab.o |
|
33 |
+ |
|
34 |
+svmtrain.$(MEX_EXT): svmtrain.c svm.h svm.o svm_model_matlab.o |
|
35 |
+ $(MEX) $(MEX_OPTION) svmtrain.c svm.o svm_model_matlab.o |
|
36 |
+ |
|
37 |
+read_sparse.$(MEX_EXT): read_sparse.c |
|
38 |
+ $(MEX) $(MEX_OPTION) read_sparse.c |
|
39 |
+ |
|
40 |
+svm_model_matlab.o: svm_model_matlab.c svm.h |
|
41 |
+ $(CXX) $(CFLAGS) -c svm_model_matlab.c |
|
42 |
+ |
|
43 |
+svm.o: svm.cpp svm.h |
|
44 |
+ $(CXX) $(CFLAGS) -c svm.cpp |
|
45 |
+ |
|
46 |
+clean: |
|
47 |
+ rm -f *~ *.o *.mex* *.obj |
... | ... |
@@ -0,0 +1,210 @@ |
1 |
+----------------------------------------- |
|
2 |
+--- MATLAB/OCTAVE interface of LIBSVM --- |
|
3 |
+----------------------------------------- |
|
4 |
+ |
|
5 |
+Table of Contents |
|
6 |
+================= |
|
7 |
+ |
|
8 |
+- Introduction |
|
9 |
+- Installation |
|
10 |
+- Usage |
|
11 |
+- Returned Model Structure |
|
12 |
+- Examples |
|
13 |
+- Other Utilities |
|
14 |
+- Additional Information |
|
15 |
+ |
|
16 |
+ |
|
17 |
+Introduction |
|
18 |
+============ |
|
19 |
+ |
|
20 |
+This tool provides a simple interface to LIBSVM, a library for support vector |
|
21 |
+machines (http://www.csie.ntu.edu.tw/~cjlin/libsvm). It is very easy to use as |
|
22 |
+the usage and the way of specifying parameters are the same as that of LIBSVM. |
|
23 |
+ |
|
24 |
+Installation |
|
25 |
+============ |
|
26 |
+ |
|
27 |
+On Unix systems, we recommend using GNU g++ as your |
|
28 |
+compiler and type 'make' to build 'svmtrain.mexglx' and 'svmpredict.mexglx'. |
|
29 |
+Note that we assume your MATLAB is installed in '/usr/local/matlab', |
|
30 |
+if not, please change MATLABDIR in Makefile. |
|
31 |
+ |
|
32 |
+Example: |
|
33 |
+ linux> make |
|
34 |
+ |
|
35 |
+To use Octave, type 'make octave': |
|
36 |
+ |
|
37 |
+Example: |
|
38 |
+ linux> make octave |
|
39 |
+ |
|
40 |
+On Windows systems, pre-built 'svmtrain.mexw32' and 'svmpredict.mexw32' are |
|
41 |
+included in this package, so no need to conduct installation. If you |
|
42 |
+have modified the sources and would like to re-build the package, type |
|
43 |
+'mex -setup' in MATLAB to choose a compiler for mex first. Then type |
|
44 |
+'make' to start the installation. |
|
45 |
+ |
|
46 |
+Starting from MATLAB 7.1 (R14SP3), the default MEX file extension is changed |
|
47 |
+from .dll to .mexw32 or .mexw64 (depends on 32-bit or 64-bit Windows). If your |
|
48 |
+MATLAB is older than 7.1, you have to build these files yourself. |
|
49 |
+ |
|
50 |
+Example: |
|
51 |
+ matlab> mex -setup |
|
52 |
+ (ps: MATLAB will show the following messages to setup default compiler.) |
|
53 |
+ Please choose your compiler for building external interface (MEX) files: |
|
54 |
+ Would you like mex to locate installed compilers [y]/n? y |
|
55 |
+ Select a compiler: |
|
56 |
+ [1] Microsoft Visual C/C++ version 7.1 in C:\Program Files\Microsoft Visual Studio |
|
57 |
+ [0] None |
|
58 |
+ Compiler: 1 |
|
59 |
+ Please verify your choices: |
|
60 |
+ Compiler: Microsoft Visual C/C++ 7.1 |
|
61 |
+ Location: C:\Program Files\Microsoft Visual Studio |
|
62 |
+ Are these correct?([y]/n): y |
|
63 |
+ |
|
64 |
+ matlab> make |
|
65 |
+ |
|
66 |
+ |
|
67 |
+Under 64-bit Windows, Visual Studio 2005 user will need "X64 Compiler and Tools". |
|
68 |
+The package won't be installed by default, but you can find it in customized |
|
69 |
+installation options. |
|
70 |
+ |
|
71 |
+For list of supported/compatible compilers for MATLAB, please check the |
|
72 |
+following page: |
|
73 |
+ |
|
74 |
+http://www.mathworks.com/support/compilers/current_release/ |
|
75 |
+ |
|
76 |
+Usage |
|
77 |
+===== |
|
78 |
+ |
|
79 |
+matlab> model = svmtrain(training_label_vector, training_instance_matrix [, 'libsvm_options']); |
|
80 |
+ |
|
81 |
+ -training_label_vector: |
|
82 |
+ An m by 1 vector of training labels (type must be double). |
|
83 |
+ -training_instance_matrix: |
|
84 |
+ An m by n matrix of m training instances with n features. |
|
85 |
+ It can be dense or sparse (type must be double). |
|
86 |
+ -libsvm_options: |
|
87 |
+ A string of training options in the same format as that of LIBSVM. |
|
88 |
+ |
|
89 |
+matlab> [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model [, 'libsvm_options']); |
|
90 |
+ |
|
91 |
+ -testing_label_vector: |
|
92 |
+ An m by 1 vector of prediction labels. If labels of test |
|
93 |
+ data are unknown, simply use any random values. (type must be double) |
|
94 |
+ -testing_instance_matrix: |
|
95 |
+ An m by n matrix of m testing instances with n features. |
|
96 |
+ It can be dense or sparse. (type must be double) |
|
97 |
+ -model: |
|
98 |
+ The output of svmtrain. |
|
99 |
+ -libsvm_options: |
|
100 |
+ A string of testing options in the same format as that of LIBSVM. |
|
101 |
+ |
|
102 |
+Returned Model Structure |
|
103 |
+======================== |
|
104 |
+ |
|
105 |
+The 'svmtrain' function returns a model which can be used for future |
|
106 |
+prediction. It is a structure and is organized as [Parameters, nr_class, |
|
107 |
+totalSV, rho, Label, ProbA, ProbB, nSV, sv_coef, SVs]: |
|
108 |
+ |
|
109 |
+ -Parameters: parameters |
|
110 |
+ -nr_class: number of classes; = 2 for regression/one-class svm |
|
111 |
+ -totalSV: total #SV |
|
112 |
+ -rho: -b of the decision function(s) wx+b |
|
113 |
+ -Label: label of each class; empty for regression/one-class SVM |
|
114 |
+ -ProbA: pairwise probability information; empty if -b 0 or in one-class SVM |
|
115 |
+ -ProbB: pairwise probability information; empty if -b 0 or in one-class SVM |
|
116 |
+ -nSV: number of SVs for each class; empty for regression/one-class SVM |
|
117 |
+ -sv_coef: coefficients for SVs in decision functions |
|
118 |
+ -SVs: support vectors |
|
119 |
+ |
|
120 |
+If you do not use the option '-b 1', ProbA and ProbB are empty |
|
121 |
+matrices. If the '-v' option is specified, cross validation is |
|
122 |
+conducted and the returned model is just a scalar: cross-validation |
|
123 |
+accuracy for classification and mean-squared error for regression. |
|
124 |
+ |
|
125 |
+More details about this model can be found in LIBSVM FAQ |
|
126 |
+(http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html) and LIBSVM |
|
127 |
+implementation document |
|
128 |
+(http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf). |
|
129 |
+ |
|
130 |
+Result of Prediction |
|
131 |
+==================== |
|
132 |
+ |
|
133 |
+The function 'svmpredict' has three outputs. The first one, |
|
134 |
+predictd_label, is a vector of predicted labels. The second output, |
|
135 |
+accuracy, is a vector including accuracy (for classification), mean |
|
136 |
+squared error, and squared correlation coefficient (for regression). |
|
137 |
+The third is a matrix containing decision values or probability |
|
138 |
+estimates (if '-b 1' is specified). If k is the number of classes, |
|
139 |
+for decision values, each row includes results of predicting |
|
140 |
+k(k-1/2) binary-class SVMs. For probabilities, each row contains k values |
|
141 |
+indicating the probability that the testing instance is in each class. |
|
142 |
+Note that the order of classes here is the same as 'Label' field |
|
143 |
+in the model structure. |
|
144 |
+ |
|
145 |
+Examples |
|
146 |
+======== |
|
147 |
+ |
|
148 |
+Train and test on the provided data heart_scale: |
|
149 |
+ |
|
150 |
+matlab> load heart_scale.mat |
|
151 |
+matlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07'); |
|
152 |
+matlab> [predict_label, accuracy, dec_values] = svmpredict(heart_scale_label, heart_scale_inst, model); % test the training data |
|
153 |
+ |
|
154 |
+For probability estimates, you need '-b 1' for training and testing: |
|
155 |
+ |
|
156 |
+matlab> load heart_scale.mat |
|
157 |
+matlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07 -b 1'); |
|
158 |
+matlab> load heart_scale.mat |
|
159 |
+matlab> [predict_label, accuracy, prob_estimates] = svmpredict(heart_scale_label, heart_scale_inst, model, '-b 1'); |
|
160 |
+ |
|
161 |
+To use precomputed kernel, you must include sample serial number as |
|
162 |
+the first column of the training and testing data (assume your kernel |
|
163 |
+matrix is K, # of instances is n): |
|
164 |
+ |
|
165 |
+matlab> K1 = [(1:n)', K]; % include sample serial number as first column |
|
166 |
+matlab> model = svmtrain(label_vector, K1, '-t 4'); |
|
167 |
+matlab> [predict_label, accuracy, dec_values] = svmpredict(label_vector, K1, model); % test the training data |
|
168 |
+ |
|
169 |
+Take linear kernel for example, the following precomputed kernel example |
|
170 |
+gives exactly same training error as LIBSVM built-in linear kernel |
|
171 |
+ |
|
172 |
+matlab> load heart_scale.mat |
|
173 |
+matlab> n = size(heart_scale_inst,1); |
|
174 |
+matlab> K = heart_scale_inst*heart_scale_inst'; |
|
175 |
+matlab> K1 = [(1:n)', K]; |
|
176 |
+matlab> model = svmtrain(heart_scale_label, K1, '-t 4'); |
|
177 |
+matlab> [predict_label, accuracy, dec_values] = svmpredict(heart_scale_label, K1, model); |
|
178 |
+ |
|
179 |
+Note that for testing, you can put anything in the testing_label_vector. For |
|
180 |
+details of precomputed kernels, please read the section ``Precomputed |
|
181 |
+Kernels'' in the README of the LIBSVM package. |
|
182 |
+ |
|
183 |
+Other Utilities |
|
184 |
+=============== |
|
185 |
+ |
|
186 |
+A matlab function read_sparse reads files in LIBSVM format: |
|
187 |
+ |
|
188 |
+[label_vector, instance_matrix] = read_sparse('data.txt'); |
|
189 |
+ |
|
190 |
+Two outputs are labels and instances, which can then be used as inputs |
|
191 |
+of svmtrain or svmpredict. This code is derived from svm-train.c in |
|
192 |
+LIBSVM by Rong-En Fan from National Taiwan University. |
|
193 |
+ |
|
194 |
+Additional Information |
|
195 |
+====================== |
|
196 |
+ |
|
197 |
+This interface was initially written by Jun-Cheng Chen, Kuan-Jen Peng, |
|
198 |
+Chih-Yuan Yang and Chih-Huai Cheng from Department of Computer |
|
199 |
+Science, National Taiwan University. The current version was prepared |
|
200 |
+by Rong-En Fan and Ting-Fan Wu. If you find this tool useful, please |
|
201 |
+cite LIBSVM as follows |
|
202 |
+ |
|
203 |
+Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for |
|
204 |
+support vector machines, 2001. Software available at |
|
205 |
+http://www.csie.ntu.edu.tw/~cjlin/libsvm |
|
206 |
+ |
|
207 |
+For any question, please contact Chih-Jen Lin <cjlin@csie.ntu.edu.tw>, |
|
208 |
+or check the FAQ page: |
|
209 |
+ |
|
210 |
+http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#/Q9:_MATLAB_interface |
... | ... |
@@ -0,0 +1,200 @@ |
1 |
+#include <stdio.h> |
|
2 |
+#include <string.h> |
|
3 |
+#include <stdlib.h> |
|
4 |
+#include <ctype.h> |
|
5 |
+#include <errno.h> |
|
6 |
+ |
|
7 |
+#include "mex.h" |
|
8 |
+ |
|
9 |
+#if MX_API_VER < 0x07030000 |
|
10 |
+typedef int mwIndex; |
|
11 |
+#endif |
|
12 |
+#define max(x,y) (((x)>(y))?(x):(y)) |
|
13 |
+#define min(x,y) (((x)<(y))?(x):(y)) |
|
14 |
+ |
|
15 |
+void exit_with_help() |
|
16 |
+{ |
|
17 |
+ mexPrintf( |
|
18 |
+ "Usage: [label_vector, instance_matrix] = read_sparse(fname);\n" |
|
19 |
+ ); |
|
20 |
+} |
|
21 |
+ |
|
22 |
+static void fake_answer(mxArray *plhs[]) |
|
23 |
+{ |
|
24 |
+ plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
25 |
+ plhs[1] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
26 |
+} |
|
27 |
+ |
|
28 |
+static char *line; |
|
29 |
+static int max_line_len; |
|
30 |
+ |
|
31 |
+static char* readline(FILE *input) |
|
32 |
+{ |
|
33 |
+ int len; |
|
34 |
+ |
|
35 |
+ if(fgets(line,max_line_len,input) == NULL) |
|
36 |
+ return NULL; |
|
37 |
+ |
|
38 |
+ while(strrchr(line,'\n') == NULL) |
|
39 |
+ { |
|
40 |
+ max_line_len *= 2; |
|
41 |
+ line = (char *) realloc(line, max_line_len); |
|
42 |
+ len = (int) strlen(line); |
|
43 |
+ if(fgets(line+len,max_line_len-len,input) == NULL) |
|
44 |
+ break; |
|
45 |
+ } |
|
46 |
+ return line; |
|
47 |
+} |
|
48 |
+ |
|
49 |
+// read in a problem (in svmlight format) |
|
50 |
+void read_problem(const char *filename, mxArray *plhs[]) |
|
51 |
+{ |
|
52 |
+ int max_index, min_index, inst_max_index, i; |
|
53 |
+ long elements, k; |
|
54 |
+ FILE *fp = fopen(filename,"r"); |
|
55 |
+ int l = 0; |
|
56 |
+ char *endptr; |
|
57 |
+ mwIndex *ir, *jc; |
|
58 |
+ double *labels, *samples; |
|
59 |
+ |
|
60 |
+ if(fp == NULL) |
|
61 |
+ { |
|
62 |
+ mexPrintf("can't open input file %s\n",filename); |
|
63 |
+ fake_answer(plhs); |
|
64 |
+ return; |
|
65 |
+ } |
|
66 |
+ |
|
67 |
+ max_line_len = 1024; |
|
68 |
+ line = (char *) malloc(max_line_len*sizeof(char)); |
|
69 |
+ |
|
70 |
+ max_index = 0; |
|
71 |
+ min_index = 1; // our index starts from 1 |
|
72 |
+ elements = 0; |
|
73 |
+ while(readline(fp) != NULL) |
|
74 |
+ { |
|
75 |
+ char *idx, *val; |
|
76 |
+ // features |
|
77 |
+ int index = 0; |
|
78 |
+ |
|
79 |
+ inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0 |
|
80 |
+ strtok(line," \t"); // label |
|
81 |
+ while (1) |
|
82 |
+ { |
|
83 |
+ idx = strtok(NULL,":"); // index:value |
|
84 |
+ val = strtok(NULL," \t"); |
|
85 |
+ if(val == NULL) |
|
86 |
+ break; |
|
87 |
+ |
|
88 |
+ errno = 0; |
|
89 |
+ index = (int) strtol(idx,&endptr,10); |
|
90 |
+ if(endptr == idx || errno != 0 || *endptr != '\0' || index <= inst_max_index) |
|
91 |
+ { |
|
92 |
+ mexPrintf("Wrong input format at line %d\n",l+1); |
|
93 |
+ fake_answer(plhs); |
|
94 |
+ return; |
|
95 |
+ } |
|
96 |
+ else |
|
97 |
+ inst_max_index = index; |
|
98 |
+ |
|
99 |
+ min_index = min(min_index, index); |
|
100 |
+ elements++; |
|
101 |
+ } |
|
102 |
+ max_index = max(max_index, inst_max_index); |
|
103 |
+ l++; |
|
104 |
+ } |
|
105 |
+ rewind(fp); |
|
106 |
+ |
|
107 |
+ // y |
|
108 |
+ plhs[0] = mxCreateDoubleMatrix(l, 1, mxREAL); |
|
109 |
+ // x^T |
|
110 |
+ if (min_index <= 0) |
|
111 |
+ plhs[1] = mxCreateSparse(max_index-min_index+1, l, elements, mxREAL); |
|
112 |
+ else |
|
113 |
+ plhs[1] = mxCreateSparse(max_index, l, elements, mxREAL); |
|
114 |
+ |
|
115 |
+ labels = mxGetPr(plhs[0]); |
|
116 |
+ samples = mxGetPr(plhs[1]); |
|
117 |
+ ir = mxGetIr(plhs[1]); |
|
118 |
+ jc = mxGetJc(plhs[1]); |
|
119 |
+ |
|
120 |
+ k=0; |
|
121 |
+ for(i=0;i<l;i++) |
|
122 |
+ { |
|
123 |
+ char *idx, *val, *label; |
|
124 |
+ jc[i] = k; |
|
125 |
+ |
|
126 |
+ readline(fp); |
|
127 |
+ |
|
128 |
+ label = strtok(line," \t"); |
|
129 |
+ labels[i] = (int)strtol(label,&endptr,10); |
|
130 |
+ if(endptr == label) |
|
131 |
+ { |
|
132 |
+ mexPrintf("Wrong input format at line %d\n",i+1); |
|
133 |
+ fake_answer(plhs); |
|
134 |
+ return; |
|
135 |
+ } |
|
136 |
+ |
|
137 |
+ // features |
|
138 |
+ while(1) |
|
139 |
+ { |
|
140 |
+ idx = strtok(NULL,":"); |
|
141 |
+ val = strtok(NULL," \t"); |
|
142 |
+ if(val == NULL) |
|
143 |
+ break; |
|
144 |
+ |
|
145 |
+ ir[k] = (mwIndex) (strtol(idx,&endptr,10) - min_index); // precomputed kernel has <index> start from 0 |
|
146 |
+ |
|
147 |
+ errno = 0; |
|
148 |
+ samples[k] = strtod(val,&endptr); |
|
149 |
+ if (endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr))) |
|
150 |
+ { |
|
151 |
+ mexPrintf("Wrong input format at line %d\n",i+1); |
|
152 |
+ fake_answer(plhs); |
|
153 |
+ return; |
|
154 |
+ } |
|
155 |
+ ++k; |
|
156 |
+ } |
|
157 |
+ } |
|
158 |
+ jc[l] = k; |
|
159 |
+ |
|
160 |
+ fclose(fp); |
|
161 |
+ free(line); |
|
162 |
+ |
|
163 |
+ { |
|
164 |
+ mxArray *rhs[1], *lhs[1]; |
|
165 |
+ rhs[0] = plhs[1]; |
|
166 |
+ if(mexCallMATLAB(1, lhs, 1, rhs, "transpose")) |
|
167 |
+ { |
|
168 |
+ mexPrintf("Error: cannot transpose problem\n"); |
|
169 |
+ fake_answer(plhs); |
|
170 |
+ return; |
|
171 |
+ } |
|
172 |
+ plhs[1] = lhs[0]; |
|
173 |
+ } |
|
174 |
+} |
|
175 |
+ |
|
176 |
+void mexFunction( int nlhs, mxArray *plhs[], |
|
177 |
+ int nrhs, const mxArray *prhs[] ) |
|
178 |
+{ |
|
179 |
+ if(nrhs == 1) |
|
180 |
+ { |
|
181 |
+ char filename[256]; |
|
182 |
+ |
|
183 |
+ mxGetString(prhs[0], filename, mxGetN(prhs[0]) + 1); |
|
184 |
+ |
|
185 |
+ if(filename == NULL) |
|
186 |
+ { |
|
187 |
+ mexPrintf("Error: filename is NULL\n"); |
|
188 |
+ return; |
|
189 |
+ } |
|
190 |
+ |
|
191 |
+ read_problem(filename, plhs); |
|
192 |
+ } |
|
193 |
+ else |
|
194 |
+ { |
|
195 |
+ exit_with_help(); |
|
196 |
+ fake_answer(plhs); |
|
197 |
+ return; |
|
198 |
+ } |
|
199 |
+} |
|
200 |
+ |
... | ... |
@@ -0,0 +1,3030 @@ |
1 |
+#include <math.h> |
|
2 |
+#include <stdio.h> |
|
3 |
+#include <stdlib.h> |
|
4 |
+#include <ctype.h> |
|
5 |
+#include <float.h> |
|
6 |
+#include <string.h> |
|
7 |
+#include <stdarg.h> |
|
8 |
+#include "svm.h" |
|
9 |
+typedef float Qfloat; |
|
10 |
+typedef signed char schar; |
|
11 |
+#ifndef min |
|
12 |
+template <class T> inline T min(T x,T y) { return (x<y)?x:y; } |
|
13 |
+#endif |
|
14 |
+#ifndef max |
|
15 |
+template <class T> inline T max(T x,T y) { return (x>y)?x:y; } |
|
16 |
+#endif |
|
17 |
+template <class T> inline void swap(T& x, T& y) { T t=x; x=y; y=t; } |
|
18 |
+template <class S, class T> inline void clone(T*& dst, S* src, int n) |
|
19 |
+{ |
|
20 |
+ dst = new T[n]; |
|
21 |
+ memcpy((void *)dst,(void *)src,sizeof(T)*n); |
|
22 |
+} |
|
23 |
+inline double powi(double base, int times) |
|
24 |
+{ |
|
25 |
+ double tmp = base, ret = 1.0; |
|
26 |
+ |
|
27 |
+ for(int t=times; t>0; t/=2) |
|
28 |
+ { |
|
29 |
+ if(t%2==1) ret*=tmp; |
|
30 |
+ tmp = tmp * tmp; |
|
31 |
+ } |
|
32 |
+ return ret; |
|
33 |
+} |
|
34 |
+#define INF HUGE_VAL |
|
35 |
+#define TAU 1e-12 |
|
36 |
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) |
|
37 |
+#if 1 |
|
38 |
+static void info(const char *fmt,...) |
|
39 |
+{ |
|
40 |
+ va_list ap; |
|
41 |
+ va_start(ap,fmt); |
|
42 |
+ vprintf(fmt,ap); |
|
43 |
+ va_end(ap); |
|
44 |
+} |
|
45 |
+static void info_flush() |
|
46 |
+{ |
|
47 |
+ fflush(stdout); |
|
48 |
+} |
|
49 |
+#else |
|
50 |
+static void info(char *fmt,...) {} |
|
51 |
+static void info_flush() {} |
|
52 |
+#endif |
|
53 |
+ |
|
54 |
+// |
|
55 |
+// Kernel Cache |
|
56 |
+// |
|
57 |
+// l is the number of total data items |
|
58 |
+// size is the cache size limit in bytes |
|
59 |
+// |
|
60 |
+class Cache |
|
61 |
+{ |
|
62 |
+public: |
|
63 |
+ Cache(int l,long int size); |
|
64 |
+ ~Cache(); |
|
65 |
+ |
|
66 |
+ // request data [0,len) |
|
67 |
+ // return some position p where [p,len) need to be filled |
|
68 |
+ // (p >= len if nothing needs to be filled) |
|
69 |
+ int get_data(const int index, Qfloat **data, int len); |
|
70 |
+ void swap_index(int i, int j); |
|
71 |
+private: |
|
72 |
+ int l; |
|
73 |
+ long int size; |
|
74 |
+ struct head_t |
|
75 |
+ { |
|
76 |
+ head_t *prev, *next; // a circular list |
|
77 |
+ Qfloat *data; |
|
78 |
+ int len; // data[0,len) is cached in this entry |
|
79 |
+ }; |
|
80 |
+ |
|
81 |
+ head_t *head; |
|
82 |
+ head_t lru_head; |
|
83 |
+ void lru_delete(head_t *h); |
|
84 |
+ void lru_insert(head_t *h); |
|
85 |
+}; |
|
86 |
+ |
|
87 |
+Cache::Cache(int l_,long int size_):l(l_),size(size_) |
|
88 |
+{ |
|
89 |
+ head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0 |
|
90 |
+ size /= sizeof(Qfloat); |
|
91 |
+ size -= l * sizeof(head_t) / sizeof(Qfloat); |
|
92 |
+ size = max(size, 2 * (long int) l); // cache must be large enough for two columns |
|
93 |
+ lru_head.next = lru_head.prev = &lru_head; |
|
94 |
+} |
|
95 |
+ |
|
96 |
+Cache::~Cache() |
|
97 |
+{ |
|
98 |
+ for(head_t *h = lru_head.next; h != &lru_head; h=h->next) |
|
99 |
+ free(h->data); |
|
100 |
+ free(head); |
|
101 |
+} |
|
102 |
+ |
|
103 |
+void Cache::lru_delete(head_t *h) |
|
104 |
+{ |
|
105 |
+ // delete from current location |
|
106 |
+ h->prev->next = h->next; |
|
107 |
+ h->next->prev = h->prev; |
|
108 |
+} |
|
109 |
+ |
|
110 |
+void Cache::lru_insert(head_t *h) |
|
111 |
+{ |
|
112 |
+ // insert to last position |
|
113 |
+ h->next = &lru_head; |
|
114 |
+ h->prev = lru_head.prev; |
|
115 |
+ h->prev->next = h; |
|
116 |
+ h->next->prev = h; |
|
117 |
+} |
|
118 |
+ |
|
119 |
+int Cache::get_data(const int index, Qfloat **data, int len) |
|
120 |
+{ |
|
121 |
+ head_t *h = &head[index]; |
|
122 |
+ if(h->len) lru_delete(h); |
|
123 |
+ int more = len - h->len; |
|
124 |
+ |
|
125 |
+ if(more > 0) |
|
126 |
+ { |
|
127 |
+ // free old space |
|
128 |
+ while(size < more) |
|
129 |
+ { |
|
130 |
+ head_t *old = lru_head.next; |
|
131 |
+ lru_delete(old); |
|
132 |
+ free(old->data); |
|
133 |
+ size += old->len; |
|
134 |
+ old->data = 0; |
|
135 |
+ old->len = 0; |
|
136 |
+ } |
|
137 |
+ |
|
138 |
+ // allocate new space |
|
139 |
+ h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); |
|
140 |
+ size -= more; |
|
141 |
+ swap(h->len,len); |
|
142 |
+ } |
|
143 |
+ |
|
144 |
+ lru_insert(h); |
|
145 |
+ *data = h->data; |
|
146 |
+ return len; |
|
147 |
+} |
|
148 |
+ |
|
149 |
+void Cache::swap_index(int i, int j) |
|
150 |
+{ |
|
151 |
+ if(i==j) return; |
|
152 |
+ |
|
153 |
+ if(head[i].len) lru_delete(&head[i]); |
|
154 |
+ if(head[j].len) lru_delete(&head[j]); |
|
155 |
+ swap(head[i].data,head[j].data); |
|
156 |
+ swap(head[i].len,head[j].len); |
|
157 |
+ if(head[i].len) lru_insert(&head[i]); |
|
158 |
+ if(head[j].len) lru_insert(&head[j]); |
|
159 |
+ |
|
160 |
+ if(i>j) swap(i,j); |
|
161 |
+ for(head_t *h = lru_head.next; h!=&lru_head; h=h->next) |
|
162 |
+ { |
|
163 |
+ if(h->len > i) |
|
164 |
+ { |
|
165 |
+ if(h->len > j) |
|
166 |
+ swap(h->data[i],h->data[j]); |
|
167 |
+ else |
|
168 |
+ { |
|
169 |
+ // give up |
|
170 |
+ lru_delete(h); |
|
171 |
+ free(h->data); |
|
172 |
+ size += h->len; |
|
173 |
+ h->data = 0; |
|
174 |
+ h->len = 0; |
|
175 |
+ } |
|
176 |
+ } |
|
177 |
+ } |
|
178 |
+} |
|
179 |
+ |
|
180 |
+// |
|
181 |
+// Kernel evaluation |
|
182 |
+// |
|
183 |
+// the static method k_function is for doing single kernel evaluation |
|
184 |
+// the constructor of Kernel prepares to calculate the l*l kernel matrix |
|
185 |
+// the member function get_Q is for getting one column from the Q Matrix |
|
186 |
+// |
|
187 |
+class QMatrix { |
|
188 |
+public: |
|
189 |
+ virtual Qfloat *get_Q(int column, int len) const = 0; |
|
190 |
+ virtual Qfloat *get_QD() const = 0; |
|
191 |
+ virtual void swap_index(int i, int j) const = 0; |
|
192 |
+ virtual ~QMatrix() {} |
|
193 |
+}; |
|
194 |
+ |
|
195 |
+class Kernel: public QMatrix { |
|
196 |
+public: |
|
197 |
+ Kernel(int l, svm_node * const * x, const svm_parameter& param); |
|
198 |
+ virtual ~Kernel(); |
|
199 |
+ |
|
200 |
+ static double k_function(const svm_node *x, const svm_node *y, |
|
201 |
+ const svm_parameter& param); |
|
202 |
+ virtual Qfloat *get_Q(int column, int len) const = 0; |
|
203 |
+ virtual Qfloat *get_QD() const = 0; |
|
204 |
+ virtual void swap_index(int i, int j) const // no so const... |
|
205 |
+ { |
|
206 |
+ swap(x[i],x[j]); |
|
207 |
+ if(x_square) swap(x_square[i],x_square[j]); |
|
208 |
+ } |
|
209 |
+protected: |
|
210 |
+ |
|
211 |
+ double (Kernel::*kernel_function)(int i, int j) const; |
|
212 |
+ |
|
213 |
+private: |
|
214 |
+ const svm_node **x; |
|
215 |
+ double *x_square; |
|
216 |
+ |
|
217 |
+ // svm_parameter |
|
218 |
+ const int kernel_type; |
|
219 |
+ const int degree; |
|
220 |
+ const double gamma; |
|
221 |
+ const double coef0; |
|
222 |
+ |
|
223 |
+ static double dot(const svm_node *px, const svm_node *py); |
|
224 |
+ double kernel_linear(int i, int j) const |
|
225 |
+ { |
|
226 |
+ return dot(x[i],x[j]); |
|
227 |
+ } |
|
228 |
+ double kernel_poly(int i, int j) const |
|
229 |
+ { |
|
230 |
+ return powi(gamma*dot(x[i],x[j])+coef0,degree); |
|
231 |
+ } |
|
232 |
+ double kernel_rbf(int i, int j) const |
|
233 |
+ { |
|
234 |
+ return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); |
|
235 |
+ } |
|
236 |
+ double kernel_sigmoid(int i, int j) const |
|
237 |
+ { |
|
238 |
+ return tanh(gamma*dot(x[i],x[j])+coef0); |
|
239 |
+ } |
|
240 |
+ double kernel_precomputed(int i, int j) const |
|
241 |
+ { |
|
242 |
+ return x[i][(int)(x[j][0].value)].value; |
|
243 |
+ } |
|
244 |
+}; |
|
245 |
+ |
|
246 |
+Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param) |
|
247 |
+:kernel_type(param.kernel_type), degree(param.degree), |
|
248 |
+ gamma(param.gamma), coef0(param.coef0) |
|
249 |
+{ |
|
250 |
+ switch(kernel_type) |
|
251 |
+ { |
|
252 |
+ case LINEAR: |
|
253 |
+ kernel_function = &Kernel::kernel_linear; |
|
254 |
+ break; |
|
255 |
+ case POLY: |
|
256 |
+ kernel_function = &Kernel::kernel_poly; |
|
257 |
+ break; |
|
258 |
+ case RBF: |
|
259 |
+ kernel_function = &Kernel::kernel_rbf; |
|
260 |
+ break; |
|
261 |
+ case SIGMOID: |
|
262 |
+ kernel_function = &Kernel::kernel_sigmoid; |
|
263 |
+ break; |
|
264 |
+ case PRECOMPUTED: |
|
265 |
+ kernel_function = &Kernel::kernel_precomputed; |
|
266 |
+ break; |
|
267 |
+ } |
|
268 |
+ |
|
269 |
+ clone(x,x_,l); |
|
270 |
+ |
|
271 |
+ if(kernel_type == RBF) |
|
272 |
+ { |
|
273 |
+ x_square = new double[l]; |
|
274 |
+ for(int i=0;i<l;i++) |
|
275 |
+ x_square[i] = dot(x[i],x[i]); |
|
276 |
+ } |
|
277 |
+ else |
|
278 |
+ x_square = 0; |
|
279 |
+} |
|
280 |
+ |
|
281 |
+Kernel::~Kernel() |
|
282 |
+{ |
|
283 |
+ delete[] x; |
|
284 |
+ delete[] x_square; |
|
285 |
+} |
|
286 |
+ |
|
287 |
+double Kernel::dot(const svm_node *px, const svm_node *py) |
|
288 |
+{ |
|
289 |
+ double sum = 0; |
|
290 |
+ while(px->index != -1 && py->index != -1) |
|
291 |
+ { |
|
292 |
+ if(px->index == py->index) |
|
293 |
+ { |
|
294 |
+ sum += px->value * py->value; |
|
295 |
+ ++px; |
|
296 |
+ ++py; |
|
297 |
+ } |
|
298 |
+ else |
|
299 |
+ { |
|
300 |
+ if(px->index > py->index) |
|
301 |
+ ++py; |
|
302 |
+ else |
|
303 |
+ ++px; |
|
304 |
+ } |
|
305 |
+ } |
|
306 |
+ return sum; |
|
307 |
+} |
|
308 |
+ |
|
309 |
+double Kernel::k_function(const svm_node *x, const svm_node *y, |
|
310 |
+ const svm_parameter& param) |
|
311 |
+{ |
|
312 |
+ switch(param.kernel_type) |
|
313 |
+ { |
|
314 |
+ case LINEAR: |
|
315 |
+ return dot(x,y); |
|
316 |
+ case POLY: |
|
317 |
+ return powi(param.gamma*dot(x,y)+param.coef0,param.degree); |
|
318 |
+ case RBF: |
|
319 |
+ { |
|
320 |
+ double sum = 0; |
|
321 |
+ while(x->index != -1 && y->index !=-1) |
|
322 |
+ { |
|
323 |
+ if(x->index == y->index) |
|
324 |
+ { |
|
325 |
+ double d = x->value - y->value; |
|
326 |
+ sum += d*d; |
|
327 |
+ ++x; |
|
328 |
+ ++y; |
|
329 |
+ } |
|
330 |
+ else |
|
331 |
+ { |
|
332 |
+ if(x->index > y->index) |
|
333 |
+ { |
|
334 |
+ sum += y->value * y->value; |
|
335 |
+ ++y; |
|
336 |
+ } |
|
337 |
+ else |
|
338 |
+ { |
|
339 |
+ sum += x->value * x->value; |
|
340 |
+ ++x; |
|
341 |
+ } |
|
342 |
+ } |
|
343 |
+ } |
|
344 |
+ |
|
345 |
+ while(x->index != -1) |
|
346 |
+ { |
|
347 |
+ sum += x->value * x->value; |
|
348 |
+ ++x; |
|
349 |
+ } |
|
350 |
+ |
|
351 |
+ while(y->index != -1) |
|
352 |
+ { |
|
353 |
+ sum += y->value * y->value; |
|
354 |
+ ++y; |
|
355 |
+ } |
|
356 |
+ |
|
357 |
+ return exp(-param.gamma*sum); |
|
358 |
+ } |
|
359 |
+ case SIGMOID: |
|
360 |
+ return tanh(param.gamma*dot(x,y)+param.coef0); |
|
361 |
+ case PRECOMPUTED: //x: test (validation), y: SV |
|
362 |
+ return x[(int)(y->value)].value; |
|
363 |
+ default: |
|
364 |
+ return 0; // Unreachable |
|
365 |
+ } |
|
366 |
+} |
|
367 |
+ |
|
368 |
+// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 |
|
369 |
+// Solves: |
|
370 |
+// |
|
371 |
+// min 0.5(\alpha^T Q \alpha) + p^T \alpha |
|
372 |
+// |
|
373 |
+// y^T \alpha = \delta |
|
374 |
+// y_i = +1 or -1 |
|
375 |
+// 0 <= alpha_i <= Cp for y_i = 1 |
|
376 |
+// 0 <= alpha_i <= Cn for y_i = -1 |
|
377 |
+// |
|
378 |
+// Given: |
|
379 |
+// |
|
380 |
+// Q, p, y, Cp, Cn, and an initial feasible point \alpha |
|
381 |
+// l is the size of vectors and matrices |
|
382 |
+// eps is the stopping tolerance |
|
383 |
+// |
|
384 |
+// solution will be put in \alpha, objective value will be put in obj |
|
385 |
+// |
|
386 |
+class Solver { |
|
387 |
+public: |
|
388 |
+ Solver() {}; |
|
389 |
+ virtual ~Solver() {}; |
|
390 |
+ |
|
391 |
+ struct SolutionInfo { |
|
392 |
+ double obj; |
|
393 |
+ double rho; |
|
394 |
+ double upper_bound_p; |
|
395 |
+ double upper_bound_n; |
|
396 |
+ double r; // for Solver_NU |
|
397 |
+ }; |
|
398 |
+ |
|
399 |
+ void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, |
|
400 |
+ double *alpha_, double Cp, double Cn, double eps, |
|
401 |
+ SolutionInfo* si, int shrinking); |
|
402 |
+protected: |
|
403 |
+ int active_size; |
|
404 |
+ schar *y; |
|
405 |
+ double *G; // gradient of objective function |
|
406 |
+ enum { LOWER_BOUND, UPPER_BOUND, FREE }; |
|
407 |
+ char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE |
|
408 |
+ double *alpha; |
|
409 |
+ const QMatrix *Q; |
|
410 |
+ const Qfloat *QD; |
|
411 |
+ double eps; |
|
412 |
+ double Cp,Cn; |
|
413 |
+ double *p; |
|
414 |
+ int *active_set; |
|
415 |
+ double *G_bar; // gradient, if we treat free variables as 0 |
|
416 |
+ int l; |
|
417 |
+ bool unshrink; // XXX |
|
418 |
+ |
|
419 |
+ double get_C(int i) |
|
420 |
+ { |
|
421 |
+ return (y[i] > 0)? Cp : Cn; |
|
422 |
+ } |
|
423 |
+ void update_alpha_status(int i) |
|
424 |
+ { |
|
425 |
+ if(alpha[i] >= get_C(i)) |
|
426 |
+ alpha_status[i] = UPPER_BOUND; |
|
427 |
+ else if(alpha[i] <= 0) |
|
428 |
+ alpha_status[i] = LOWER_BOUND; |
|
429 |
+ else alpha_status[i] = FREE; |
|
430 |
+ } |
|
431 |
+ bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } |
|
432 |
+ bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } |
|
433 |
+ bool is_free(int i) { return alpha_status[i] == FREE; } |
|
434 |
+ void swap_index(int i, int j); |
|
435 |
+ void reconstruct_gradient(); |
|
436 |
+ virtual int select_working_set(int &i, int &j); |
|
437 |
+ virtual double calculate_rho(); |
|
438 |
+ virtual void do_shrinking(); |
|
439 |
+private: |
|
440 |
+ bool be_shrunk(int i, double Gmax1, double Gmax2); |
|
441 |
+}; |
|
442 |
+ |
|
443 |
+void Solver::swap_index(int i, int j) |
|
444 |
+{ |
|
445 |
+ Q->swap_index(i,j); |
|
446 |
+ swap(y[i],y[j]); |
|
447 |
+ swap(G[i],G[j]); |
|
448 |
+ swap(alpha_status[i],alpha_status[j]); |
|
449 |
+ swap(alpha[i],alpha[j]); |
|
450 |
+ swap(p[i],p[j]); |
|
451 |
+ swap(active_set[i],active_set[j]); |
|
452 |
+ swap(G_bar[i],G_bar[j]); |
|
453 |
+} |
|
454 |
+ |
|
455 |
+void Solver::reconstruct_gradient() |
|
456 |
+{ |
|
457 |
+ // reconstruct inactive elements of G from G_bar and free variables |
|
458 |
+ |
|
459 |
+ if(active_size == l) return; |
|
460 |
+ |
|
461 |
+ int i,j; |
|
462 |
+ int nr_free = 0; |
|
463 |
+ |
|
464 |
+ for(j=active_size;j<l;j++) |
|
465 |
+ G[j] = G_bar[j] + p[j]; |
|
466 |
+ |
|
467 |
+ for(j=0;j<active_size;j++) |
|
468 |
+ if(is_free(j)) |
|
469 |
+ nr_free++; |
|
470 |
+ |
|
471 |
+ if(2*nr_free < active_size) |
|
472 |
+ info("\nWarning: using -h 0 may be faster\n"); |
|
473 |
+ |
|
474 |
+ if (nr_free*l > 2*active_size*(l-active_size)) |
|
475 |
+ { |
|
476 |
+ for(i=active_size;i<l;i++) |
|
477 |
+ { |
|
478 |
+ const Qfloat *Q_i = Q->get_Q(i,active_size); |
|
479 |
+ for(j=0;j<active_size;j++) |
|
480 |
+ if(is_free(j)) |
|
481 |
+ G[i] += alpha[j] * Q_i[j]; |
|
482 |
+ } |
|
483 |
+ } |
|
484 |
+ else |
|
485 |
+ { |
|
486 |
+ for(i=0;i<active_size;i++) |
|
487 |
+ if(is_free(i)) |
|
488 |
+ { |
|
489 |
+ const Qfloat *Q_i = Q->get_Q(i,l); |
|
490 |
+ double alpha_i = alpha[i]; |
|
491 |
+ for(j=active_size;j<l;j++) |
|
492 |
+ G[j] += alpha_i * Q_i[j]; |
|
493 |
+ } |
|
494 |
+ } |
|
495 |
+} |
|
496 |
+ |
|
497 |
+void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, |
|
498 |
+ double *alpha_, double Cp, double Cn, double eps, |
|
499 |
+ SolutionInfo* si, int shrinking) |
|
500 |
+{ |
|
501 |
+ this->l = l; |
|
502 |
+ this->Q = &Q; |
|
503 |
+ QD=Q.get_QD(); |
|
504 |
+ clone(p, p_,l); |
|
505 |
+ clone(y, y_,l); |
|
506 |
+ clone(alpha,alpha_,l); |
|
507 |
+ this->Cp = Cp; |
|
508 |
+ this->Cn = Cn; |
|
509 |
+ this->eps = eps; |
|
510 |
+ unshrink = false; |
|
511 |
+ |
|
512 |
+ // initialize alpha_status |
|
513 |
+ { |
|
514 |
+ alpha_status = new char[l]; |
|
515 |
+ for(int i=0;i<l;i++) |
|
516 |
+ update_alpha_status(i); |
|
517 |
+ } |
|
518 |
+ |
|
519 |
+ // initialize active set (for shrinking) |
|
520 |
+ { |
|
521 |
+ active_set = new int[l]; |
|
522 |
+ for(int i=0;i<l;i++) |
|
523 |
+ active_set[i] = i; |
|
524 |
+ active_size = l; |
|
525 |
+ } |
|
526 |
+ |
|
527 |
+ // initialize gradient |
|
528 |
+ { |
|
529 |
+ G = new double[l]; |
|
530 |
+ G_bar = new double[l]; |
|
531 |
+ int i; |
|
532 |
+ for(i=0;i<l;i++) |
|
533 |
+ { |
|
534 |
+ G[i] = p[i]; |
|
535 |
+ G_bar[i] = 0; |
|
536 |
+ } |
|
537 |
+ for(i=0;i<l;i++) |
|
538 |
+ if(!is_lower_bound(i)) |
|
539 |
+ { |
|
540 |
+ const Qfloat *Q_i = Q.get_Q(i,l); |
|
541 |
+ double alpha_i = alpha[i]; |
|
542 |
+ int j; |
|
543 |
+ for(j=0;j<l;j++) |
|
544 |
+ G[j] += alpha_i*Q_i[j]; |
|
545 |
+ if(is_upper_bound(i)) |
|
546 |
+ for(j=0;j<l;j++) |
|
547 |
+ G_bar[j] += get_C(i) * Q_i[j]; |
|
548 |
+ } |
|
549 |
+ } |
|
550 |
+ |
|
551 |
+ // optimization step |
|
552 |
+ |
|
553 |
+ int iter = 0; |
|
554 |
+ int counter = min(l,1000)+1; |
|
555 |
+ |
|
556 |
+ while(1) |
|
557 |
+ { |
|
558 |
+ // show progress and do shrinking |
|
559 |
+ |
|
560 |
+ if(--counter == 0) |
|
561 |
+ { |
|
562 |
+ counter = min(l,1000); |
|
563 |
+ if(shrinking) do_shrinking(); |
|
564 |
+ info("."); info_flush(); |
|
565 |
+ } |
|
566 |
+ |
|
567 |
+ int i,j; |
|
568 |
+ if(select_working_set(i,j)!=0) |
|
569 |
+ { |
|
570 |
+ // reconstruct the whole gradient |
|
571 |
+ reconstruct_gradient(); |
|
572 |
+ // reset active set size and check |
|
573 |
+ active_size = l; |
|
574 |
+ info("*"); info_flush(); |
|
575 |
+ if(select_working_set(i,j)!=0) |
|
576 |
+ break; |
|
577 |
+ else |
|
578 |
+ counter = 1; // do shrinking next iteration |
|
579 |
+ } |
|
580 |
+ |
|
581 |
+ ++iter; |
|
582 |
+ |
|
583 |
+ // update alpha[i] and alpha[j], handle bounds carefully |
|
584 |
+ |
|
585 |
+ const Qfloat *Q_i = Q.get_Q(i,active_size); |
|
586 |
+ const Qfloat *Q_j = Q.get_Q(j,active_size); |
|
587 |
+ |
|
588 |
+ double C_i = get_C(i); |
|
589 |
+ double C_j = get_C(j); |
|
590 |
+ |
|
591 |
+ double old_alpha_i = alpha[i]; |
|
592 |
+ double old_alpha_j = alpha[j]; |
|
593 |
+ |
|
594 |
+ if(y[i]!=y[j]) |
|
595 |
+ { |
|
596 |
+ double quad_coef = Q_i[i]+Q_j[j]+2*Q_i[j]; |
|
597 |
+ if (quad_coef <= 0) |
|
598 |
+ quad_coef = TAU; |
|
599 |
+ double delta = (-G[i]-G[j])/quad_coef; |
|
600 |
+ double diff = alpha[i] - alpha[j]; |
|
601 |
+ alpha[i] += delta; |
|
602 |
+ alpha[j] += delta; |
|
603 |
+ |
|
604 |
+ if(diff > 0) |
|
605 |
+ { |
|
606 |
+ if(alpha[j] < 0) |
|
607 |
+ { |
|
608 |
+ alpha[j] = 0; |
|
609 |
+ alpha[i] = diff; |
|
610 |
+ } |
|
611 |
+ } |
|
612 |
+ else |
|
613 |
+ { |
|
614 |
+ if(alpha[i] < 0) |
|
615 |
+ { |
|
616 |
+ alpha[i] = 0; |
|
617 |
+ alpha[j] = -diff; |
|
618 |
+ } |
|
619 |
+ } |
|
620 |
+ if(diff > C_i - C_j) |
|
621 |
+ { |
|
622 |
+ if(alpha[i] > C_i) |
|
623 |
+ { |
|
624 |
+ alpha[i] = C_i; |
|
625 |
+ alpha[j] = C_i - diff; |
|
626 |
+ } |
|
627 |
+ } |
|
628 |
+ else |
|
629 |
+ { |
|
630 |
+ if(alpha[j] > C_j) |
|
631 |
+ { |
|
632 |
+ alpha[j] = C_j; |
|
633 |
+ alpha[i] = C_j + diff; |
|
634 |
+ } |
|
635 |
+ } |
|
636 |
+ } |
|
637 |
+ else |
|
638 |
+ { |
|
639 |
+ double quad_coef = Q_i[i]+Q_j[j]-2*Q_i[j]; |
|
640 |
+ if (quad_coef <= 0) |
|
641 |
+ quad_coef = TAU; |
|
642 |
+ double delta = (G[i]-G[j])/quad_coef; |
|
643 |
+ double sum = alpha[i] + alpha[j]; |
|
644 |
+ alpha[i] -= delta; |
|
645 |
+ alpha[j] += delta; |
|
646 |
+ |
|
647 |
+ if(sum > C_i) |
|
648 |
+ { |
|
649 |
+ if(alpha[i] > C_i) |
|
650 |
+ { |
|
651 |
+ alpha[i] = C_i; |
|
652 |
+ alpha[j] = sum - C_i; |
|
653 |
+ } |
|
654 |
+ } |
|
655 |
+ else |
|
656 |
+ { |
|
657 |
+ if(alpha[j] < 0) |
|
658 |
+ { |
|
659 |
+ alpha[j] = 0; |
|
660 |
+ alpha[i] = sum; |
|
661 |
+ } |
|
662 |
+ } |
|
663 |
+ if(sum > C_j) |
|
664 |
+ { |
|
665 |
+ if(alpha[j] > C_j) |
|
666 |
+ { |
|
667 |
+ alpha[j] = C_j; |
|
668 |
+ alpha[i] = sum - C_j; |
|
669 |
+ } |
|
670 |
+ } |
|
671 |
+ else |
|
672 |
+ { |
|
673 |
+ if(alpha[i] < 0) |
|
674 |
+ { |
|
675 |
+ alpha[i] = 0; |
|
676 |
+ alpha[j] = sum; |
|
677 |
+ } |
|
678 |
+ } |
|
679 |
+ } |
|
680 |
+ |
|
681 |
+ // update G |
|
682 |
+ |
|
683 |
+ double delta_alpha_i = alpha[i] - old_alpha_i; |
|
684 |
+ double delta_alpha_j = alpha[j] - old_alpha_j; |
|
685 |
+ |
|
686 |
+ for(int k=0;k<active_size;k++) |
|
687 |
+ { |
|
688 |
+ G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j; |
|
689 |
+ } |
|
690 |
+ |
|
691 |
+ // update alpha_status and G_bar |
|
692 |
+ |
|
693 |
+ { |
|
694 |
+ bool ui = is_upper_bound(i); |
|
695 |
+ bool uj = is_upper_bound(j); |
|
696 |
+ update_alpha_status(i); |
|
697 |
+ update_alpha_status(j); |
|
698 |
+ int k; |
|
699 |
+ if(ui != is_upper_bound(i)) |
|
700 |
+ { |
|
701 |
+ Q_i = Q.get_Q(i,l); |
|
702 |
+ if(ui) |
|
703 |
+ for(k=0;k<l;k++) |
|
704 |
+ G_bar[k] -= C_i * Q_i[k]; |
|
705 |
+ else |
|
706 |
+ for(k=0;k<l;k++) |
|
707 |
+ G_bar[k] += C_i * Q_i[k]; |
|
708 |
+ } |
|
709 |
+ |
|
710 |
+ if(uj != is_upper_bound(j)) |
|
711 |
+ { |
|
712 |
+ Q_j = Q.get_Q(j,l); |
|
713 |
+ if(uj) |
|
714 |
+ for(k=0;k<l;k++) |
|
715 |
+ G_bar[k] -= C_j * Q_j[k]; |
|
716 |
+ else |
|
717 |
+ for(k=0;k<l;k++) |
|
718 |
+ G_bar[k] += C_j * Q_j[k]; |
|
719 |
+ } |
|
720 |
+ } |
|
721 |
+ } |
|
722 |
+ |
|
723 |
+ // calculate rho |
|
724 |
+ |
|
725 |
+ si->rho = calculate_rho(); |
|
726 |
+ |
|
727 |
+ // calculate objective value |
|
728 |
+ { |
|
729 |
+ double v = 0; |
|
730 |
+ int i; |
|
731 |
+ for(i=0;i<l;i++) |
|
732 |
+ v += alpha[i] * (G[i] + p[i]); |
|
733 |
+ |
|
734 |
+ si->obj = v/2; |
|
735 |
+ } |
|
736 |
+ |
|
737 |
+ // put back the solution |
|
738 |
+ { |
|
739 |
+ for(int i=0;i<l;i++) |
|
740 |
+ alpha_[active_set[i]] = alpha[i]; |
|
741 |
+ } |
|
742 |
+ |
|
743 |
+ // juggle everything back |
|
744 |
+ /*{ |
|
745 |
+ for(int i=0;i<l;i++) |
|
746 |
+ while(active_set[i] != i) |
|
747 |
+ swap_index(i,active_set[i]); |
|
748 |
+ // or Q.swap_index(i,active_set[i]); |
|
749 |
+ }*/ |
|
750 |
+ |
|
751 |
+ si->upper_bound_p = Cp; |
|
752 |
+ si->upper_bound_n = Cn; |
|
753 |
+ |
|
754 |
+ info("\noptimization finished, #iter = %d\n",iter); |
|
755 |
+ |
|
756 |
+ delete[] p; |
|
757 |
+ delete[] y; |
|
758 |
+ delete[] alpha; |
|
759 |
+ delete[] alpha_status; |
|
760 |
+ delete[] active_set; |
|
761 |
+ delete[] G; |
|
762 |
+ delete[] G_bar; |
|
763 |
+} |
|
764 |
+ |
|
765 |
+// return 1 if already optimal, return 0 otherwise |
|
766 |
+int Solver::select_working_set(int &out_i, int &out_j) |
|
767 |
+{ |
|
768 |
+ // return i,j such that |
|
769 |
+ // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) |
|
770 |
+ // j: minimizes the decrease of obj value |
|
771 |
+ // (if quadratic coefficeint <= 0, replace it with tau) |
|
772 |
+ // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) |
|
773 |
+ |
|
774 |
+ double Gmax = -INF; |
|
775 |
+ double Gmax2 = -INF; |
|
776 |
+ int Gmax_idx = -1; |
|
777 |
+ int Gmin_idx = -1; |
|
778 |
+ double obj_diff_min = INF; |
|
779 |
+ |
|
780 |
+ for(int t=0;t<active_size;t++) |
|
781 |
+ if(y[t]==+1) |
|
782 |
+ { |
|
783 |
+ if(!is_upper_bound(t)) |
|
784 |
+ if(-G[t] >= Gmax) |
|
785 |
+ { |
|
786 |
+ Gmax = -G[t]; |
|
787 |
+ Gmax_idx = t; |
|
788 |
+ } |
|
789 |
+ } |
|
790 |
+ else |
|
791 |
+ { |
|
792 |
+ if(!is_lower_bound(t)) |
|
793 |
+ if(G[t] >= Gmax) |
|
794 |
+ { |
|
795 |
+ Gmax = G[t]; |
|
796 |
+ Gmax_idx = t; |
|
797 |
+ } |
|
798 |
+ } |
|
799 |
+ |
|
800 |
+ int i = Gmax_idx; |
|
801 |
+ const Qfloat *Q_i = NULL; |
|
802 |
+ if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1 |
|
803 |
+ Q_i = Q->get_Q(i,active_size); |
|
804 |
+ |
|
805 |
+ for(int j=0;j<active_size;j++) |
|
806 |
+ { |
|
807 |
+ if(y[j]==+1) |
|
808 |
+ { |
|
809 |
+ if (!is_lower_bound(j)) |
|
810 |
+ { |
|
811 |
+ double grad_diff=Gmax+G[j]; |
|
812 |
+ if (G[j] >= Gmax2) |
|
813 |
+ Gmax2 = G[j]; |
|
814 |
+ if (grad_diff > 0) |
|
815 |
+ { |
|
816 |
+ double obj_diff; |
|
817 |
+ double quad_coef=Q_i[i]+QD[j]-2.0*y[i]*Q_i[j]; |
|
818 |
+ if (quad_coef > 0) |
|
819 |
+ obj_diff = -(grad_diff*grad_diff)/quad_coef; |
|
820 |
+ else |
|
821 |
+ obj_diff = -(grad_diff*grad_diff)/TAU; |
|
822 |
+ |
|
823 |
+ if (obj_diff <= obj_diff_min) |
|
824 |
+ { |
|
825 |
+ Gmin_idx=j; |
|
826 |
+ obj_diff_min = obj_diff; |
|
827 |
+ } |
|
828 |
+ } |
|
829 |
+ } |
|
830 |
+ } |
|
831 |
+ else |
|
832 |
+ { |
|
833 |
+ if (!is_upper_bound(j)) |
|
834 |
+ { |
|
835 |
+ double grad_diff= Gmax-G[j]; |
|
836 |
+ if (-G[j] >= Gmax2) |
|
837 |
+ Gmax2 = -G[j]; |
|
838 |
+ if (grad_diff > 0) |
|
839 |
+ { |
|
840 |
+ double obj_diff; |
|
841 |
+ double quad_coef=Q_i[i]+QD[j]+2.0*y[i]*Q_i[j]; |
|
842 |
+ if (quad_coef > 0) |
|
843 |
+ obj_diff = -(grad_diff*grad_diff)/quad_coef; |
|
844 |
+ else |
|
845 |
+ obj_diff = -(grad_diff*grad_diff)/TAU; |
|
846 |
+ |
|
847 |
+ if (obj_diff <= obj_diff_min) |
|
848 |
+ { |
|
849 |
+ Gmin_idx=j; |
|
850 |
+ obj_diff_min = obj_diff; |
|
851 |
+ } |
|
852 |
+ } |
|
853 |
+ } |
|
854 |
+ } |
|
855 |
+ } |
|
856 |
+ |
|
857 |
+ if(Gmax+Gmax2 < eps) |
|
858 |
+ return 1; |
|
859 |
+ |
|
860 |
+ out_i = Gmax_idx; |
|
861 |
+ out_j = Gmin_idx; |
|
862 |
+ return 0; |
|
863 |
+} |
|
864 |
+ |
|
865 |
+bool Solver::be_shrunk(int i, double Gmax1, double Gmax2) |
|
866 |
+{ |
|
867 |
+ if(is_upper_bound(i)) |
|
868 |
+ { |
|
869 |
+ if(y[i]==+1) |
|
870 |
+ return(-G[i] > Gmax1); |
|
871 |
+ else |
|
872 |
+ return(-G[i] > Gmax2); |
|
873 |
+ } |
|
874 |
+ else if(is_lower_bound(i)) |
|
875 |
+ { |
|
876 |
+ if(y[i]==+1) |
|
877 |
+ return(G[i] > Gmax2); |
|
878 |
+ else |
|
879 |
+ return(G[i] > Gmax1); |
|
880 |
+ } |
|
881 |
+ else |
|
882 |
+ return(false); |
|
883 |
+} |
|
884 |
+ |
|
885 |
+void Solver::do_shrinking() |
|
886 |
+{ |
|
887 |
+ int i; |
|
888 |
+ double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } |
|
889 |
+ double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } |
|
890 |
+ |
|
891 |
+ // find maximal violating pair first |
|
892 |
+ for(i=0;i<active_size;i++) |
|
893 |
+ { |
|
894 |
+ if(y[i]==+1) |
|
895 |
+ { |
|
896 |
+ if(!is_upper_bound(i)) |
|
897 |
+ { |
|
898 |
+ if(-G[i] >= Gmax1) |
|
899 |
+ Gmax1 = -G[i]; |
|
900 |
+ } |
|
901 |
+ if(!is_lower_bound(i)) |
|
902 |
+ { |
|
903 |
+ if(G[i] >= Gmax2) |
|
904 |
+ Gmax2 = G[i]; |
|
905 |
+ } |
|
906 |
+ } |
|
907 |
+ else |
|
908 |
+ { |
|
909 |
+ if(!is_upper_bound(i)) |
|
910 |
+ { |
|
911 |
+ if(-G[i] >= Gmax2) |
|
912 |
+ Gmax2 = -G[i]; |
|
913 |
+ } |
|
914 |
+ if(!is_lower_bound(i)) |
|
915 |
+ { |
|
916 |
+ if(G[i] >= Gmax1) |
|
917 |
+ Gmax1 = G[i]; |
|
918 |
+ } |
|
919 |
+ } |
|
920 |
+ } |
|
921 |
+ |
|
922 |
+ if(unshrink == false && Gmax1 + Gmax2 <= eps*10) |
|
923 |
+ { |
|
924 |
+ unshrink = true; |
|
925 |
+ reconstruct_gradient(); |
|
926 |
+ active_size = l; |
|
927 |
+ info("*"); info_flush(); |
|
928 |
+ } |
|
929 |
+ |
|
930 |
+ for(i=0;i<active_size;i++) |
|
931 |
+ if (be_shrunk(i, Gmax1, Gmax2)) |
|
932 |
+ { |
|
933 |
+ active_size--; |
|
934 |
+ while (active_size > i) |
|
935 |
+ { |
|
936 |
+ if (!be_shrunk(active_size, Gmax1, Gmax2)) |
|
937 |
+ { |
|
938 |
+ swap_index(i,active_size); |
|
939 |
+ break; |
|
940 |
+ } |
|
941 |
+ active_size--; |
|
942 |
+ } |
|
943 |
+ } |
|
944 |
+} |
|
945 |
+ |
|
946 |
+double Solver::calculate_rho() |
|
947 |
+{ |
|
948 |
+ double r; |
|
949 |
+ int nr_free = 0; |
|
950 |
+ double ub = INF, lb = -INF, sum_free = 0; |
|
951 |
+ for(int i=0;i<active_size;i++) |
|
952 |
+ { |
|
953 |
+ double yG = y[i]*G[i]; |
|
954 |
+ |
|
955 |
+ if(is_upper_bound(i)) |
|
956 |
+ { |
|
957 |
+ if(y[i]==-1) |
|
958 |
+ ub = min(ub,yG); |
|
959 |
+ else |
|
960 |
+ lb = max(lb,yG); |
|
961 |
+ } |
|
962 |
+ else if(is_lower_bound(i)) |
|
963 |
+ { |
|
964 |
+ if(y[i]==+1) |
|
965 |
+ ub = min(ub,yG); |
|
966 |
+ else |
|
967 |
+ lb = max(lb,yG); |
|
968 |
+ } |
|
969 |
+ else |
|
970 |
+ { |
|
971 |
+ ++nr_free; |
|
972 |
+ sum_free += yG; |
|
973 |
+ } |
|
974 |
+ } |
|
975 |
+ |
|
976 |
+ if(nr_free>0) |
|
977 |
+ r = sum_free/nr_free; |
|
978 |
+ else |
|
979 |
+ r = (ub+lb)/2; |
|
980 |
+ |
|
981 |
+ return r; |
|
982 |
+} |
|
983 |
+ |
|
984 |
+// |
|
985 |
+// Solver for nu-svm classification and regression |
|
986 |
+// |
|
987 |
+// additional constraint: e^T \alpha = constant |
|
988 |
+// |
|
989 |
+class Solver_NU : public Solver |
|
990 |
+{ |
|
991 |
+public: |
|
992 |
+ Solver_NU() {} |
|
993 |
+ void Solve(int l, const QMatrix& Q, const double *p, const schar *y, |
|
994 |
+ double *alpha, double Cp, double Cn, double eps, |
|
995 |
+ SolutionInfo* si, int shrinking) |
|
996 |
+ { |
|
997 |
+ this->si = si; |
|
998 |
+ Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); |
|
999 |
+ } |
|
1000 |
+private: |
|
1001 |
+ SolutionInfo *si; |
|
1002 |
+ int select_working_set(int &i, int &j); |
|
1003 |
+ double calculate_rho(); |
|
1004 |
+ bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); |
|
1005 |
+ void do_shrinking(); |
|
1006 |
+}; |
|
1007 |
+ |
|
1008 |
+// return 1 if already optimal, return 0 otherwise |
|
1009 |
+int Solver_NU::select_working_set(int &out_i, int &out_j) |
|
1010 |
+{ |
|
1011 |
+ // return i,j such that y_i = y_j and |
|
1012 |
+ // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) |
|
1013 |
+ // j: minimizes the decrease of obj value |
|
1014 |
+ // (if quadratic coefficeint <= 0, replace it with tau) |
|
1015 |
+ // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) |
|
1016 |
+ |
|
1017 |
+ double Gmaxp = -INF; |
|
1018 |
+ double Gmaxp2 = -INF; |
|
1019 |
+ int Gmaxp_idx = -1; |
|
1020 |
+ |
|
1021 |
+ double Gmaxn = -INF; |
|
1022 |
+ double Gmaxn2 = -INF; |
|
1023 |
+ int Gmaxn_idx = -1; |
|
1024 |
+ |
|
1025 |
+ int Gmin_idx = -1; |
|
1026 |
+ double obj_diff_min = INF; |
|
1027 |
+ |
|
1028 |
+ for(int t=0;t<active_size;t++) |
|
1029 |
+ if(y[t]==+1) |
|
1030 |
+ { |
|
1031 |
+ if(!is_upper_bound(t)) |
|
1032 |
+ if(-G[t] >= Gmaxp) |
|
1033 |
+ { |
|
1034 |
+ Gmaxp = -G[t]; |
|
1035 |
+ Gmaxp_idx = t; |
|
1036 |
+ } |
|
1037 |
+ } |
|
1038 |
+ else |
|
1039 |
+ { |
|
1040 |
+ if(!is_lower_bound(t)) |
|
1041 |
+ if(G[t] >= Gmaxn) |
|
1042 |
+ { |
|
1043 |
+ Gmaxn = G[t]; |
|
1044 |
+ Gmaxn_idx = t; |
|
1045 |
+ } |
|
1046 |
+ } |
|
1047 |
+ |
|
1048 |
+ int ip = Gmaxp_idx; |
|
1049 |
+ int in = Gmaxn_idx; |
|
1050 |
+ const Qfloat *Q_ip = NULL; |
|
1051 |
+ const Qfloat *Q_in = NULL; |
|
1052 |
+ if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1 |
|
1053 |
+ Q_ip = Q->get_Q(ip,active_size); |
|
1054 |
+ if(in != -1) |
|
1055 |
+ Q_in = Q->get_Q(in,active_size); |
|
1056 |
+ |
|
1057 |
+ for(int j=0;j<active_size;j++) |
|
1058 |
+ { |
|
1059 |
+ if(y[j]==+1) |
|
1060 |
+ { |
|
1061 |
+ if (!is_lower_bound(j)) |
|
1062 |
+ { |
|
1063 |
+ double grad_diff=Gmaxp+G[j]; |
|
1064 |
+ if (G[j] >= Gmaxp2) |
|
1065 |
+ Gmaxp2 = G[j]; |
|
1066 |
+ if (grad_diff > 0) |
|
1067 |
+ { |
|
1068 |
+ double obj_diff; |
|
1069 |
+ double quad_coef = Q_ip[ip]+QD[j]-2*Q_ip[j]; |
|
1070 |
+ if (quad_coef > 0) |
|
1071 |
+ obj_diff = -(grad_diff*grad_diff)/quad_coef; |
|
1072 |
+ else |
|
1073 |
+ obj_diff = -(grad_diff*grad_diff)/TAU; |
|
1074 |
+ |
|
1075 |
+ if (obj_diff <= obj_diff_min) |
|
1076 |
+ { |
|
1077 |
+ Gmin_idx=j; |
|
1078 |
+ obj_diff_min = obj_diff; |
|
1079 |
+ } |
|
1080 |
+ } |
|
1081 |
+ } |
|
1082 |
+ } |
|
1083 |
+ else |
|
1084 |
+ { |
|
1085 |
+ if (!is_upper_bound(j)) |
|
1086 |
+ { |
|
1087 |
+ double grad_diff=Gmaxn-G[j]; |
|
1088 |
+ if (-G[j] >= Gmaxn2) |
|
1089 |
+ Gmaxn2 = -G[j]; |
|
1090 |
+ if (grad_diff > 0) |
|
1091 |
+ { |
|
1092 |
+ double obj_diff; |
|
1093 |
+ double quad_coef = Q_in[in]+QD[j]-2*Q_in[j]; |
|
1094 |
+ if (quad_coef > 0) |
|
1095 |
+ obj_diff = -(grad_diff*grad_diff)/quad_coef; |
|
1096 |
+ else |
|
1097 |
+ obj_diff = -(grad_diff*grad_diff)/TAU; |
|
1098 |
+ |
|
1099 |
+ if (obj_diff <= obj_diff_min) |
|
1100 |
+ { |
|
1101 |
+ Gmin_idx=j; |
|
1102 |
+ obj_diff_min = obj_diff; |
|
1103 |
+ } |
|
1104 |
+ } |
|
1105 |
+ } |
|
1106 |
+ } |
|
1107 |
+ } |
|
1108 |
+ |
|
1109 |
+ if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps) |
|
1110 |
+ return 1; |
|
1111 |
+ |
|
1112 |
+ if (y[Gmin_idx] == +1) |
|
1113 |
+ out_i = Gmaxp_idx; |
|
1114 |
+ else |
|
1115 |
+ out_i = Gmaxn_idx; |
|
1116 |
+ out_j = Gmin_idx; |
|
1117 |
+ |
|
1118 |
+ return 0; |
|
1119 |
+} |
|
1120 |
+ |
|
1121 |
+bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) |
|
1122 |
+{ |
|
1123 |
+ if(is_upper_bound(i)) |
|
1124 |
+ { |
|
1125 |
+ if(y[i]==+1) |
|
1126 |
+ return(-G[i] > Gmax1); |
|
1127 |
+ else |
|
1128 |
+ return(-G[i] > Gmax4); |
|
1129 |
+ } |
|
1130 |
+ else if(is_lower_bound(i)) |
|
1131 |
+ { |
|
1132 |
+ if(y[i]==+1) |
|
1133 |
+ return(G[i] > Gmax2); |
|
1134 |
+ else |
|
1135 |
+ return(G[i] > Gmax3); |
|
1136 |
+ } |
|
1137 |
+ else |
|
1138 |
+ return(false); |
|
1139 |
+} |
|
1140 |
+ |
|
1141 |
+void Solver_NU::do_shrinking() |
|
1142 |
+{ |
|
1143 |
+ double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } |
|
1144 |
+ double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } |
|
1145 |
+ double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } |
|
1146 |
+ double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } |
|
1147 |
+ |
|
1148 |
+ // find maximal violating pair first |
|
1149 |
+ int i; |
|
1150 |
+ for(i=0;i<active_size;i++) |
|
1151 |
+ { |
|
1152 |
+ if(!is_upper_bound(i)) |
|
1153 |
+ { |
|
1154 |
+ if(y[i]==+1) |
|
1155 |
+ { |
|
1156 |
+ if(-G[i] > Gmax1) Gmax1 = -G[i]; |
|
1157 |
+ } |
|
1158 |
+ else if(-G[i] > Gmax4) Gmax4 = -G[i]; |
|
1159 |
+ } |
|
1160 |
+ if(!is_lower_bound(i)) |
|
1161 |
+ { |
|
1162 |
+ if(y[i]==+1) |
|
1163 |
+ { |
|
1164 |
+ if(G[i] > Gmax2) Gmax2 = G[i]; |
|
1165 |
+ } |
|
1166 |
+ else if(G[i] > Gmax3) Gmax3 = G[i]; |
|
1167 |
+ } |
|
1168 |
+ } |
|
1169 |
+ |
|
1170 |
+ if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) |
|
1171 |
+ { |
|
1172 |
+ unshrink = true; |
|
1173 |
+ reconstruct_gradient(); |
|
1174 |
+ active_size = l; |
|
1175 |
+ } |
|
1176 |
+ |
|
1177 |
+ for(i=0;i<active_size;i++) |
|
1178 |
+ if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4)) |
|
1179 |
+ { |
|
1180 |
+ active_size--; |
|
1181 |
+ while (active_size > i) |
|
1182 |
+ { |
|
1183 |
+ if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) |
|
1184 |
+ { |
|
1185 |
+ swap_index(i,active_size); |
|
1186 |
+ break; |
|
1187 |
+ } |
|
1188 |
+ active_size--; |
|
1189 |
+ } |
|
1190 |
+ } |
|
1191 |
+} |
|
1192 |
+ |
|
1193 |
+double Solver_NU::calculate_rho() |
|
1194 |
+{ |
|
1195 |
+ int nr_free1 = 0,nr_free2 = 0; |
|
1196 |
+ double ub1 = INF, ub2 = INF; |
|
1197 |
+ double lb1 = -INF, lb2 = -INF; |
|
1198 |
+ double sum_free1 = 0, sum_free2 = 0; |
|
1199 |
+ |
|
1200 |
+ for(int i=0;i<active_size;i++) |
|
1201 |
+ { |
|
1202 |
+ if(y[i]==+1) |
|
1203 |
+ { |
|
1204 |
+ if(is_upper_bound(i)) |
|
1205 |
+ lb1 = max(lb1,G[i]); |
|
1206 |
+ else if(is_lower_bound(i)) |
|
1207 |
+ ub1 = min(ub1,G[i]); |
|
1208 |
+ else |
|
1209 |
+ { |
|
1210 |
+ ++nr_free1; |
|
1211 |
+ sum_free1 += G[i]; |
|
1212 |
+ } |
|
1213 |
+ } |
|
1214 |
+ else |
|
1215 |
+ { |
|
1216 |
+ if(is_upper_bound(i)) |
|
1217 |
+ lb2 = max(lb2,G[i]); |
|
1218 |
+ else if(is_lower_bound(i)) |
|
1219 |
+ ub2 = min(ub2,G[i]); |
|
1220 |
+ else |
|
1221 |
+ { |
|
1222 |
+ ++nr_free2; |
|
1223 |
+ sum_free2 += G[i]; |
|
1224 |
+ } |
|
1225 |
+ } |
|
1226 |
+ } |
|
1227 |
+ |
|
1228 |
+ double r1,r2; |
|
1229 |
+ if(nr_free1 > 0) |
|
1230 |
+ r1 = sum_free1/nr_free1; |
|
1231 |
+ else |
|
1232 |
+ r1 = (ub1+lb1)/2; |
|
1233 |
+ |
|
1234 |
+ if(nr_free2 > 0) |
|
1235 |
+ r2 = sum_free2/nr_free2; |
|
1236 |
+ else |
|
1237 |
+ r2 = (ub2+lb2)/2; |
|
1238 |
+ |
|
1239 |
+ si->r = (r1+r2)/2; |
|
1240 |
+ return (r1-r2)/2; |
|
1241 |
+} |
|
1242 |
+ |
|
1243 |
+// |
|
1244 |
+// Q matrices for various formulations |
|
1245 |
+// |
|
1246 |
+class SVC_Q: public Kernel |
|
1247 |
+{ |
|
1248 |
+public: |
|
1249 |
+ SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_) |
|
1250 |
+ :Kernel(prob.l, prob.x, param) |
|
1251 |
+ { |
|
1252 |
+ clone(y,y_,prob.l); |
|
1253 |
+ cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); |
|
1254 |
+ QD = new Qfloat[prob.l]; |
|
1255 |
+ for(int i=0;i<prob.l;i++) |
|
1256 |
+ QD[i]= (Qfloat)(this->*kernel_function)(i,i); |
|
1257 |
+ } |
|
1258 |
+ |
|
1259 |
+ Qfloat *get_Q(int i, int len) const |
|
1260 |
+ { |
|
1261 |
+ Qfloat *data; |
|
1262 |
+ int start, j; |
|
1263 |
+ if((start = cache->get_data(i,&data,len)) < len) |
|
1264 |
+ { |
|
1265 |
+ for(j=start;j<len;j++) |
|
1266 |
+ data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j)); |
|
1267 |
+ } |
|
1268 |
+ return data; |
|
1269 |
+ } |
|
1270 |
+ |
|
1271 |
+ Qfloat *get_QD() const |
|
1272 |
+ { |
|
1273 |
+ return QD; |
|
1274 |
+ } |
|
1275 |
+ |
|
1276 |
+ void swap_index(int i, int j) const |
|
1277 |
+ { |
|
1278 |
+ cache->swap_index(i,j); |
|
1279 |
+ Kernel::swap_index(i,j); |
|
1280 |
+ swap(y[i],y[j]); |
|
1281 |
+ swap(QD[i],QD[j]); |
|
1282 |
+ } |
|
1283 |
+ |
|
1284 |
+ ~SVC_Q() |
|
1285 |
+ { |
|
1286 |
+ delete[] y; |
|
1287 |
+ delete cache; |
|
1288 |
+ delete[] QD; |
|
1289 |
+ } |
|
1290 |
+private: |
|
1291 |
+ schar *y; |
|
1292 |
+ Cache *cache; |
|
1293 |
+ Qfloat *QD; |
|
1294 |
+}; |
|
1295 |
+ |
|
1296 |
+class ONE_CLASS_Q: public Kernel |
|
1297 |
+{ |
|
1298 |
+public: |
|
1299 |
+ ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param) |
|
1300 |
+ :Kernel(prob.l, prob.x, param) |
|
1301 |
+ { |
|
1302 |
+ cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); |
|
1303 |
+ QD = new Qfloat[prob.l]; |
|
1304 |
+ for(int i=0;i<prob.l;i++) |
|
1305 |
+ QD[i]= (Qfloat)(this->*kernel_function)(i,i); |
|
1306 |
+ } |
|
1307 |
+ |
|
1308 |
+ Qfloat *get_Q(int i, int len) const |
|
1309 |
+ { |
|
1310 |
+ Qfloat *data; |
|
1311 |
+ int start, j; |
|
1312 |
+ if((start = cache->get_data(i,&data,len)) < len) |
|
1313 |
+ { |
|
1314 |
+ for(j=start;j<len;j++) |
|
1315 |
+ data[j] = (Qfloat)(this->*kernel_function)(i,j); |
|
1316 |
+ } |
|
1317 |
+ return data; |
|
1318 |
+ } |
|
1319 |
+ |
|
1320 |
+ Qfloat *get_QD() const |
|
1321 |
+ { |
|
1322 |
+ return QD; |
|
1323 |
+ } |
|
1324 |
+ |
|
1325 |
+ void swap_index(int i, int j) const |
|
1326 |
+ { |
|
1327 |
+ cache->swap_index(i,j); |
|
1328 |
+ Kernel::swap_index(i,j); |
|
1329 |
+ swap(QD[i],QD[j]); |
|
1330 |
+ } |
|
1331 |
+ |
|
1332 |
+ ~ONE_CLASS_Q() |
|
1333 |
+ { |
|
1334 |
+ delete cache; |
|
1335 |
+ delete[] QD; |
|
1336 |
+ } |
|
1337 |
+private: |
|
1338 |
+ Cache *cache; |
|
1339 |
+ Qfloat *QD; |
|
1340 |
+}; |
|
1341 |
+ |
|
1342 |
+class SVR_Q: public Kernel |
|
1343 |
+{ |
|
1344 |
+public: |
|
1345 |
+ SVR_Q(const svm_problem& prob, const svm_parameter& param) |
|
1346 |
+ :Kernel(prob.l, prob.x, param) |
|
1347 |
+ { |
|
1348 |
+ l = prob.l; |
|
1349 |
+ cache = new Cache(l,(long int)(param.cache_size*(1<<20))); |
|
1350 |
+ QD = new Qfloat[2*l]; |
|
1351 |
+ sign = new schar[2*l]; |
|
1352 |
+ index = new int[2*l]; |
|
1353 |
+ for(int k=0;k<l;k++) |
|
1354 |
+ { |
|
1355 |
+ sign[k] = 1; |
|
1356 |
+ sign[k+l] = -1; |
|
1357 |
+ index[k] = k; |
|
1358 |
+ index[k+l] = k; |
|
1359 |
+ QD[k]= (Qfloat)(this->*kernel_function)(k,k); |
|
1360 |
+ QD[k+l]=QD[k]; |
|
1361 |
+ } |
|
1362 |
+ buffer[0] = new Qfloat[2*l]; |
|
1363 |
+ buffer[1] = new Qfloat[2*l]; |
|
1364 |
+ next_buffer = 0; |
|
1365 |
+ } |
|
1366 |
+ |
|
1367 |
+ void swap_index(int i, int j) const |
|
1368 |
+ { |
|
1369 |
+ swap(sign[i],sign[j]); |
|
1370 |
+ swap(index[i],index[j]); |
|
1371 |
+ swap(QD[i],QD[j]); |
|
1372 |
+ } |
|
1373 |
+ |
|
1374 |
+ Qfloat *get_Q(int i, int len) const |
|
1375 |
+ { |
|
1376 |
+ Qfloat *data; |
|
1377 |
+ int j, real_i = index[i]; |
|
1378 |
+ if(cache->get_data(real_i,&data,l) < l) |
|
1379 |
+ { |
|
1380 |
+ for(j=0;j<l;j++) |
|
1381 |
+ data[j] = (Qfloat)(this->*kernel_function)(real_i,j); |
|
1382 |
+ } |
|
1383 |
+ |
|
1384 |
+ // reorder and copy |
|
1385 |
+ Qfloat *buf = buffer[next_buffer]; |
|
1386 |
+ next_buffer = 1 - next_buffer; |
|
1387 |
+ schar si = sign[i]; |
|
1388 |
+ for(int j=0;j<len;j++) |
|
1389 |
+ buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]]; |
|
1390 |
+ return buf; |
|
1391 |
+ } |
|
1392 |
+ |
|
1393 |
+ Qfloat *get_QD() const |
|
1394 |
+ { |
|
1395 |
+ return QD; |
|
1396 |
+ } |
|
1397 |
+ |
|
1398 |
+ ~SVR_Q() |
|
1399 |
+ { |
|
1400 |
+ delete cache; |
|
1401 |
+ delete[] sign; |
|
1402 |
+ delete[] index; |
|
1403 |
+ delete[] buffer[0]; |
|
1404 |
+ delete[] buffer[1]; |
|
1405 |
+ delete[] QD; |
|
1406 |
+ } |
|
1407 |
+private: |
|
1408 |
+ int l; |
|
1409 |
+ Cache *cache; |
|
1410 |
+ schar *sign; |
|
1411 |
+ int *index; |
|
1412 |
+ mutable int next_buffer; |
|
1413 |
+ Qfloat *buffer[2]; |
|
1414 |
+ Qfloat *QD; |
|
1415 |
+}; |
|
1416 |
+ |
|
1417 |
+// |
|
1418 |
+// construct and solve various formulations |
|
1419 |
+// |
|
1420 |
+static void solve_c_svc( |
|
1421 |
+ const svm_problem *prob, const svm_parameter* param, |
|
1422 |
+ double *alpha, Solver::SolutionInfo* si, double Cp, double Cn) |
|
1423 |
+{ |
|
1424 |
+ int l = prob->l; |
|
1425 |
+ double *minus_ones = new double[l]; |
|
1426 |
+ schar *y = new schar[l]; |
|
1427 |
+ |
|
1428 |
+ int i; |
|
1429 |
+ |
|
1430 |
+ for(i=0;i<l;i++) |
|
1431 |
+ { |
|
1432 |
+ alpha[i] = 0; |
|
1433 |
+ minus_ones[i] = -1; |
|
1434 |
+ if(prob->y[i] > 0) y[i] = +1; else y[i]=-1; |
|
1435 |
+ } |
|
1436 |
+ |
|
1437 |
+ Solver s; |
|
1438 |
+ s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, |
|
1439 |
+ alpha, Cp, Cn, param->eps, si, param->shrinking); |
|
1440 |
+ |
|
1441 |
+ double sum_alpha=0; |
|
1442 |
+ for(i=0;i<l;i++) |
|
1443 |
+ sum_alpha += alpha[i]; |
|
1444 |
+ |
|
1445 |
+ if (Cp==Cn) |
|
1446 |
+ info("nu = %f\n", sum_alpha/(Cp*prob->l)); |
|
1447 |
+ |
|
1448 |
+ for(i=0;i<l;i++) |
|
1449 |
+ alpha[i] *= y[i]; |
|
1450 |
+ |
|
1451 |
+ delete[] minus_ones; |
|
1452 |
+ delete[] y; |
|
1453 |
+} |
|
1454 |
+ |
|
1455 |
+static void solve_nu_svc( |
|
1456 |
+ const svm_problem *prob, const svm_parameter *param, |
|
1457 |
+ double *alpha, Solver::SolutionInfo* si) |
|
1458 |
+{ |
|
1459 |
+ int i; |
|
1460 |
+ int l = prob->l; |
|
1461 |
+ double nu = param->nu; |
|
1462 |
+ |
|
1463 |
+ schar *y = new schar[l]; |
|
1464 |
+ |
|
1465 |
+ for(i=0;i<l;i++) |
|
1466 |
+ if(prob->y[i]>0) |
|
1467 |
+ y[i] = +1; |
|
1468 |
+ else |
|
1469 |
+ y[i] = -1; |
|
1470 |
+ |
|
1471 |
+ double sum_pos = nu*l/2; |
|
1472 |
+ double sum_neg = nu*l/2; |
|
1473 |
+ |
|
1474 |
+ for(i=0;i<l;i++) |
|
1475 |
+ if(y[i] == +1) |
|
1476 |
+ { |
|
1477 |
+ alpha[i] = min(1.0,sum_pos); |
|
1478 |
+ sum_pos -= alpha[i]; |
|
1479 |
+ } |
|
1480 |
+ else |
|
1481 |
+ { |
|
1482 |
+ alpha[i] = min(1.0,sum_neg); |
|
1483 |
+ sum_neg -= alpha[i]; |
|
1484 |
+ } |
|
1485 |
+ |
|
1486 |
+ double *zeros = new double[l]; |
|
1487 |
+ |
|
1488 |
+ for(i=0;i<l;i++) |
|
1489 |
+ zeros[i] = 0; |
|
1490 |
+ |
|
1491 |
+ Solver_NU s; |
|
1492 |
+ s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, |
|
1493 |
+ alpha, 1.0, 1.0, param->eps, si, param->shrinking); |
|
1494 |
+ double r = si->r; |
|
1495 |
+ |
|
1496 |
+ info("C = %f\n",1/r); |
|
1497 |
+ |
|
1498 |
+ for(i=0;i<l;i++) |
|
1499 |
+ alpha[i] *= y[i]/r; |
|
1500 |
+ |
|
1501 |
+ si->rho /= r; |
|
1502 |
+ si->obj /= (r*r); |
|
1503 |
+ si->upper_bound_p = 1/r; |
|
1504 |
+ si->upper_bound_n = 1/r; |
|
1505 |
+ |
|
1506 |
+ delete[] y; |
|
1507 |
+ delete[] zeros; |
|
1508 |
+} |
|
1509 |
+ |
|
1510 |
+static void solve_one_class( |
|
1511 |
+ const svm_problem *prob, const svm_parameter *param, |
|
1512 |
+ double *alpha, Solver::SolutionInfo* si) |
|
1513 |
+{ |
|
1514 |
+ int l = prob->l; |
|
1515 |
+ double *zeros = new double[l]; |
|
1516 |
+ schar *ones = new schar[l]; |
|
1517 |
+ int i; |
|
1518 |
+ |
|
1519 |
+ int n = (int)(param->nu*prob->l); // # of alpha's at upper bound |
|
1520 |
+ |
|
1521 |
+ for(i=0;i<n;i++) |
|
1522 |
+ alpha[i] = 1; |
|
1523 |
+ if(n<prob->l) |
|
1524 |
+ alpha[n] = param->nu * prob->l - n; |
|
1525 |
+ for(i=n+1;i<l;i++) |
|
1526 |
+ alpha[i] = 0; |
|
1527 |
+ |
|
1528 |
+ for(i=0;i<l;i++) |
|
1529 |
+ { |
|
1530 |
+ zeros[i] = 0; |
|
1531 |
+ ones[i] = 1; |
|
1532 |
+ } |
|
1533 |
+ |
|
1534 |
+ Solver s; |
|
1535 |
+ s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones, |
|
1536 |
+ alpha, 1.0, 1.0, param->eps, si, param->shrinking); |
|
1537 |
+ |
|
1538 |
+ delete[] zeros; |
|
1539 |
+ delete[] ones; |
|
1540 |
+} |
|
1541 |
+ |
|
1542 |
+static void solve_epsilon_svr( |
|
1543 |
+ const svm_problem *prob, const svm_parameter *param, |
|
1544 |
+ double *alpha, Solver::SolutionInfo* si) |
|
1545 |
+{ |
|
1546 |
+ int l = prob->l; |
|
1547 |
+ double *alpha2 = new double[2*l]; |
|
1548 |
+ double *linear_term = new double[2*l]; |
|
1549 |
+ schar *y = new schar[2*l]; |
|
1550 |
+ int i; |
|
1551 |
+ |
|
1552 |
+ for(i=0;i<l;i++) |
|
1553 |
+ { |
|
1554 |
+ alpha2[i] = 0; |
|
1555 |
+ linear_term[i] = param->p - prob->y[i]; |
|
1556 |
+ y[i] = 1; |
|
1557 |
+ |
|
1558 |
+ alpha2[i+l] = 0; |
|
1559 |
+ linear_term[i+l] = param->p + prob->y[i]; |
|
1560 |
+ y[i+l] = -1; |
|
1561 |
+ } |
|
1562 |
+ |
|
1563 |
+ Solver s; |
|
1564 |
+ s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, |
|
1565 |
+ alpha2, param->C, param->C, param->eps, si, param->shrinking); |
|
1566 |
+ |
|
1567 |
+ double sum_alpha = 0; |
|
1568 |
+ for(i=0;i<l;i++) |
|
1569 |
+ { |
|
1570 |
+ alpha[i] = alpha2[i] - alpha2[i+l]; |
|
1571 |
+ sum_alpha += fabs(alpha[i]); |
|
1572 |
+ } |
|
1573 |
+ info("nu = %f\n",sum_alpha/(param->C*l)); |
|
1574 |
+ |
|
1575 |
+ delete[] alpha2; |
|
1576 |
+ delete[] linear_term; |
|
1577 |
+ delete[] y; |
|
1578 |
+} |
|
1579 |
+ |
|
1580 |
+static void solve_nu_svr( |
|
1581 |
+ const svm_problem *prob, const svm_parameter *param, |
|
1582 |
+ double *alpha, Solver::SolutionInfo* si) |
|
1583 |
+{ |
|
1584 |
+ int l = prob->l; |
|
1585 |
+ double C = param->C; |
|
1586 |
+ double *alpha2 = new double[2*l]; |
|
1587 |
+ double *linear_term = new double[2*l]; |
|
1588 |
+ schar *y = new schar[2*l]; |
|
1589 |
+ int i; |
|
1590 |
+ |
|
1591 |
+ double sum = C * param->nu * l / 2; |
|
1592 |
+ for(i=0;i<l;i++) |
|
1593 |
+ { |
|
1594 |
+ alpha2[i] = alpha2[i+l] = min(sum,C); |
|
1595 |
+ sum -= alpha2[i]; |
|
1596 |
+ |
|
1597 |
+ linear_term[i] = - prob->y[i]; |
|
1598 |
+ y[i] = 1; |
|
1599 |
+ |
|
1600 |
+ linear_term[i+l] = prob->y[i]; |
|
1601 |
+ y[i+l] = -1; |
|
1602 |
+ } |
|
1603 |
+ |
|
1604 |
+ Solver_NU s; |
|
1605 |
+ s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, |
|
1606 |
+ alpha2, C, C, param->eps, si, param->shrinking); |
|
1607 |
+ |
|
1608 |
+ info("epsilon = %f\n",-si->r); |
|
1609 |
+ |
|
1610 |
+ for(i=0;i<l;i++) |
|
1611 |
+ alpha[i] = alpha2[i] - alpha2[i+l]; |
|
1612 |
+ |
|
1613 |
+ delete[] alpha2; |
|
1614 |
+ delete[] linear_term; |
|
1615 |
+ delete[] y; |
|
1616 |
+} |
|
1617 |
+ |
|
1618 |
+// |
|
1619 |
+// decision_function |
|
1620 |
+// |
|
1621 |
+struct decision_function |
|
1622 |
+{ |
|
1623 |
+ double *alpha; |
|
1624 |
+ double rho; |
|
1625 |
+}; |
|
1626 |
+ |
|
1627 |
+decision_function svm_train_one( |
|
1628 |
+ const svm_problem *prob, const svm_parameter *param, |
|
1629 |
+ double Cp, double Cn) |
|
1630 |
+{ |
|
1631 |
+ double *alpha = Malloc(double,prob->l); |
|
1632 |
+ Solver::SolutionInfo si; |
|
1633 |
+ switch(param->svm_type) |
|
1634 |
+ { |
|
1635 |
+ case C_SVC: |
|
1636 |
+ solve_c_svc(prob,param,alpha,&si,Cp,Cn); |
|
1637 |
+ break; |
|
1638 |
+ case NU_SVC: |
|
1639 |
+ solve_nu_svc(prob,param,alpha,&si); |
|
1640 |
+ break; |
|
1641 |
+ case ONE_CLASS: |
|
1642 |
+ solve_one_class(prob,param,alpha,&si); |
|
1643 |
+ break; |
|
1644 |
+ case EPSILON_SVR: |
|
1645 |
+ solve_epsilon_svr(prob,param,alpha,&si); |
|
1646 |
+ break; |
|
1647 |
+ case NU_SVR: |
|
1648 |
+ solve_nu_svr(prob,param,alpha,&si); |
|
1649 |
+ break; |
|
1650 |
+ } |
|
1651 |
+ |
|
1652 |
+ info("obj = %f, rho = %f\n",si.obj,si.rho); |
|
1653 |
+ |
|
1654 |
+ // output SVs |
|
1655 |
+ |
|
1656 |
+ int nSV = 0; |
|
1657 |
+ int nBSV = 0; |
|
1658 |
+ for(int i=0;i<prob->l;i++) |
|
1659 |
+ { |
|
1660 |
+ if(fabs(alpha[i]) > 0) |
|
1661 |
+ { |
|
1662 |
+ ++nSV; |
|
1663 |
+ if(prob->y[i] > 0) |
|
1664 |
+ { |
|
1665 |
+ if(fabs(alpha[i]) >= si.upper_bound_p) |
|
1666 |
+ ++nBSV; |
|
1667 |
+ } |
|
1668 |
+ else |
|
1669 |
+ { |
|
1670 |
+ if(fabs(alpha[i]) >= si.upper_bound_n) |
|
1671 |
+ ++nBSV; |
|
1672 |
+ } |
|
1673 |
+ } |
|
1674 |
+ } |
|
1675 |
+ |
|
1676 |
+ info("nSV = %d, nBSV = %d\n",nSV,nBSV); |
|
1677 |
+ |
|
1678 |
+ decision_function f; |
|
1679 |
+ f.alpha = alpha; |
|
1680 |
+ f.rho = si.rho; |
|
1681 |
+ return f; |
|
1682 |
+} |
|
1683 |
+ |
|
1684 |
+/* |
|
1685 |
+// |
|
1686 |
+// svm_model |
|
1687 |
+// |
|
1688 |
+struct svm_model |
|
1689 |
+{ |
|
1690 |
+ svm_parameter param; // parameter |
|
1691 |
+ int nr_class; // number of classes, = 2 in regression/one class svm |
|
1692 |
+ int l; // total #SV |
|
1693 |
+ svm_node **SV; // SVs (SV[l]) |
|
1694 |
+ double **sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l]) |
|
1695 |
+ double *rho; // constants in decision functions (rho[k*(k-1)/2]) |
|
1696 |
+ double *probA; // pariwise probability information |
|
1697 |
+ double *probB; |
|
1698 |
+ |
|
1699 |
+ // for classification only |
|
1700 |
+ |
|
1701 |
+ int *label; // label of each class (label[k]) |
|
1702 |
+ int *nSV; // number of SVs for each class (nSV[k]) |
|
1703 |
+ // nSV[0] + nSV[1] + ... + nSV[k-1] = l |
|
1704 |
+ // XXX |
|
1705 |
+ int free_sv; // 1 if svm_model is created by svm_load_model |
|
1706 |
+ // 0 if svm_model is created by svm_train |
|
1707 |
+}; |
|
1708 |
+*/ |
|
1709 |
+// Platt's binary SVM Probablistic Output: an improvement from Lin et al. |
|
1710 |
+void sigmoid_train( |
|
1711 |
+ int l, const double *dec_values, const double *labels, |
|
1712 |
+ double& A, double& B) |
|
1713 |
+{ |
|
1714 |
+ double prior1=0, prior0 = 0; |
|
1715 |
+ int i; |
|
1716 |
+ |
|
1717 |
+ for (i=0;i<l;i++) |
|
1718 |
+ if (labels[i] > 0) prior1+=1; |
|
1719 |
+ else prior0+=1; |
|
1720 |
+ |
|
1721 |
+ int max_iter=100; // Maximal number of iterations |
|
1722 |
+ double min_step=1e-10; // Minimal step taken in line search |
|
1723 |
+ double sigma=1e-12; // For numerically strict PD of Hessian |
|
1724 |
+ double eps=1e-5; |
|
1725 |
+ double hiTarget=(prior1+1.0)/(prior1+2.0); |
|
1726 |
+ double loTarget=1/(prior0+2.0); |
|
1727 |
+ double *t=Malloc(double,l); |
|
1728 |
+ double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; |
|
1729 |
+ double newA,newB,newf,d1,d2; |
|
1730 |
+ int iter; |
|
1731 |
+ |
|
1732 |
+ // Initial Point and Initial Fun Value |
|
1733 |
+ A=0.0; B=log((prior0+1.0)/(prior1+1.0)); |
|
1734 |
+ double fval = 0.0; |
|
1735 |
+ |
|
1736 |
+ for (i=0;i<l;i++) |
|
1737 |
+ { |
|
1738 |
+ if (labels[i]>0) t[i]=hiTarget; |
|
1739 |
+ else t[i]=loTarget; |
|
1740 |
+ fApB = dec_values[i]*A+B; |
|
1741 |
+ if (fApB>=0) |
|
1742 |
+ fval += t[i]*fApB + log(1+exp(-fApB)); |
|
1743 |
+ else |
|
1744 |
+ fval += (t[i] - 1)*fApB +log(1+exp(fApB)); |
|
1745 |
+ } |
|
1746 |
+ for (iter=0;iter<max_iter;iter++) |
|
1747 |
+ { |
|
1748 |
+ // Update Gradient and Hessian (use H' = H + sigma I) |
|
1749 |
+ h11=sigma; // numerically ensures strict PD |
|
1750 |
+ h22=sigma; |
|
1751 |
+ h21=0.0;g1=0.0;g2=0.0; |
|
1752 |
+ for (i=0;i<l;i++) |
|
1753 |
+ { |
|
1754 |
+ fApB = dec_values[i]*A+B; |
|
1755 |
+ if (fApB >= 0) |
|
1756 |
+ { |
|
1757 |
+ p=exp(-fApB)/(1.0+exp(-fApB)); |
|
1758 |
+ q=1.0/(1.0+exp(-fApB)); |
|
1759 |
+ } |
|
1760 |
+ else |
|
1761 |
+ { |
|
1762 |
+ p=1.0/(1.0+exp(fApB)); |
|
1763 |
+ q=exp(fApB)/(1.0+exp(fApB)); |
|
1764 |
+ } |
|
1765 |
+ d2=p*q; |
|
1766 |
+ h11+=dec_values[i]*dec_values[i]*d2; |
|
1767 |
+ h22+=d2; |
|
1768 |
+ h21+=dec_values[i]*d2; |
|
1769 |
+ d1=t[i]-p; |
|
1770 |
+ g1+=dec_values[i]*d1; |
|
1771 |
+ g2+=d1; |
|
1772 |
+ } |
|
1773 |
+ |
|
1774 |
+ // Stopping Criteria |
|
1775 |
+ if (fabs(g1)<eps && fabs(g2)<eps) |
|
1776 |
+ break; |
|
1777 |
+ |
|
1778 |
+ // Finding Newton direction: -inv(H') * g |
|
1779 |
+ det=h11*h22-h21*h21; |
|
1780 |
+ dA=-(h22*g1 - h21 * g2) / det; |
|
1781 |
+ dB=-(-h21*g1+ h11 * g2) / det; |
|
1782 |
+ gd=g1*dA+g2*dB; |
|
1783 |
+ |
|
1784 |
+ |
|
1785 |
+ stepsize = 1; // Line Search |
|
1786 |
+ while (stepsize >= min_step) |
|
1787 |
+ { |
|
1788 |
+ newA = A + stepsize * dA; |
|
1789 |
+ newB = B + stepsize * dB; |
|
1790 |
+ |
|
1791 |
+ // New function value |
|
1792 |
+ newf = 0.0; |
|
1793 |
+ for (i=0;i<l;i++) |
|
1794 |
+ { |
|
1795 |
+ fApB = dec_values[i]*newA+newB; |
|
1796 |
+ if (fApB >= 0) |
|
1797 |
+ newf += t[i]*fApB + log(1+exp(-fApB)); |
|
1798 |
+ else |
|
1799 |
+ newf += (t[i] - 1)*fApB +log(1+exp(fApB)); |
|
1800 |
+ } |
|
1801 |
+ // Check sufficient decrease |
|
1802 |
+ if (newf<fval+0.0001*stepsize*gd) |
|
1803 |
+ { |
|
1804 |
+ A=newA;B=newB;fval=newf; |
|
1805 |
+ break; |
|
1806 |
+ } |
|
1807 |
+ else |
|
1808 |
+ stepsize = stepsize / 2.0; |
|
1809 |
+ } |
|
1810 |
+ |
|
1811 |
+ if (stepsize < min_step) |
|
1812 |
+ { |
|
1813 |
+ info("Line search fails in two-class probability estimates\n"); |
|
1814 |
+ break; |
|
1815 |
+ } |
|
1816 |
+ } |
|
1817 |
+ |
|
1818 |
+ if (iter>=max_iter) |
|
1819 |
+ info("Reaching maximal iterations in two-class probability estimates\n"); |
|
1820 |
+ free(t); |
|
1821 |
+} |
|
1822 |
+ |
|
1823 |
+double sigmoid_predict(double decision_value, double A, double B) |
|
1824 |
+{ |
|
1825 |
+ double fApB = decision_value*A+B; |
|
1826 |
+ if (fApB >= 0) |
|
1827 |
+ return exp(-fApB)/(1.0+exp(-fApB)); |
|
1828 |
+ else |
|
1829 |
+ return 1.0/(1+exp(fApB)) ; |
|
1830 |
+} |
|
1831 |
+ |
|
1832 |
+// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng |
|
1833 |
+void multiclass_probability(int k, double **r, double *p) |
|
1834 |
+{ |
|
1835 |
+ int t,j; |
|
1836 |
+ int iter = 0, max_iter=max(100,k); |
|
1837 |
+ double **Q=Malloc(double *,k); |
|
1838 |
+ double *Qp=Malloc(double,k); |
|
1839 |
+ double pQp, eps=0.005/k; |
|
1840 |
+ |
|
1841 |
+ for (t=0;t<k;t++) |
|
1842 |
+ { |
|
1843 |
+ p[t]=1.0/k; // Valid if k = 1 |
|
1844 |
+ Q[t]=Malloc(double,k); |
|
1845 |
+ Q[t][t]=0; |
|
1846 |
+ for (j=0;j<t;j++) |
|
1847 |
+ { |
|
1848 |
+ Q[t][t]+=r[j][t]*r[j][t]; |
|
1849 |
+ Q[t][j]=Q[j][t]; |
|
1850 |
+ } |
|
1851 |
+ for (j=t+1;j<k;j++) |
|
1852 |
+ { |
|
1853 |
+ Q[t][t]+=r[j][t]*r[j][t]; |
|
1854 |
+ Q[t][j]=-r[j][t]*r[t][j]; |
|
1855 |
+ } |
|
1856 |
+ } |
|
1857 |
+ for (iter=0;iter<max_iter;iter++) |
|
1858 |
+ { |
|
1859 |
+ // stopping condition, recalculate QP,pQP for numerical accuracy |
|
1860 |
+ pQp=0; |
|
1861 |
+ for (t=0;t<k;t++) |
|
1862 |
+ { |
|
1863 |
+ Qp[t]=0; |
|
1864 |
+ for (j=0;j<k;j++) |
|
1865 |
+ Qp[t]+=Q[t][j]*p[j]; |
|
1866 |
+ pQp+=p[t]*Qp[t]; |
|
1867 |
+ } |
|
1868 |
+ double max_error=0; |
|
1869 |
+ for (t=0;t<k;t++) |
|
1870 |
+ { |
|
1871 |
+ double error=fabs(Qp[t]-pQp); |
|
1872 |
+ if (error>max_error) |
|
1873 |
+ max_error=error; |
|
1874 |
+ } |
|
1875 |
+ if (max_error<eps) break; |
|
1876 |
+ |
|
1877 |
+ for (t=0;t<k;t++) |
|
1878 |
+ { |
|
1879 |
+ double diff=(-Qp[t]+pQp)/Q[t][t]; |
|
1880 |
+ p[t]+=diff; |
|
1881 |
+ pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); |
|
1882 |
+ for (j=0;j<k;j++) |
|
1883 |
+ { |
|
1884 |
+ Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); |
|
1885 |
+ p[j]/=(1+diff); |
|
1886 |
+ } |
|
1887 |
+ } |
|
1888 |
+ } |
|
1889 |
+ if (iter>=max_iter) |
|
1890 |
+ info("Exceeds max_iter in multiclass_prob\n"); |
|
1891 |
+ for(t=0;t<k;t++) free(Q[t]); |
|
1892 |
+ free(Q); |
|
1893 |
+ free(Qp); |
|
1894 |
+} |
|
1895 |
+ |
|
1896 |
+// Cross-validation decision values for probability estimates |
|
1897 |
+void svm_binary_svc_probability( |
|
1898 |
+ const svm_problem *prob, const svm_parameter *param, |
|
1899 |
+ double Cp, double Cn, double& probA, double& probB) |
|
1900 |
+{ |
|
1901 |
+ int i; |
|
1902 |
+ int nr_fold = 5; |
|
1903 |
+ int *perm = Malloc(int,prob->l); |
|
1904 |
+ double *dec_values = Malloc(double,prob->l); |
|
1905 |
+ |
|
1906 |
+ // random shuffle |
|
1907 |
+ for(i=0;i<prob->l;i++) perm[i]=i; |
|
1908 |
+ for(i=0;i<prob->l;i++) |
|
1909 |
+ { |
|
1910 |
+ int j = i+rand()%(prob->l-i); |
|
1911 |
+ swap(perm[i],perm[j]); |
|
1912 |
+ } |
|
1913 |
+ for(i=0;i<nr_fold;i++) |
|
1914 |
+ { |
|
1915 |
+ int begin = i*prob->l/nr_fold; |
|
1916 |
+ int end = (i+1)*prob->l/nr_fold; |
|
1917 |
+ int j,k; |
|
1918 |
+ struct svm_problem subprob; |
|
1919 |
+ |
|
1920 |
+ subprob.l = prob->l-(end-begin); |
|
1921 |
+ subprob.x = Malloc(struct svm_node*,subprob.l); |
|
1922 |
+ subprob.y = Malloc(double,subprob.l); |
|
1923 |
+ |
|
1924 |
+ k=0; |
|
1925 |
+ for(j=0;j<begin;j++) |
|
1926 |
+ { |
|
1927 |
+ subprob.x[k] = prob->x[perm[j]]; |
|
1928 |
+ subprob.y[k] = prob->y[perm[j]]; |
|
1929 |
+ ++k; |
|
1930 |
+ } |
|
1931 |
+ for(j=end;j<prob->l;j++) |
|
1932 |
+ { |
|
1933 |
+ subprob.x[k] = prob->x[perm[j]]; |
|
1934 |
+ subprob.y[k] = prob->y[perm[j]]; |
|
1935 |
+ ++k; |
|
1936 |
+ } |
|
1937 |
+ int p_count=0,n_count=0; |
|
1938 |
+ for(j=0;j<k;j++) |
|
1939 |
+ if(subprob.y[j]>0) |
|
1940 |
+ p_count++; |
|
1941 |
+ else |
|
1942 |
+ n_count++; |
|
1943 |
+ |
|
1944 |
+ if(p_count==0 && n_count==0) |
|
1945 |
+ for(j=begin;j<end;j++) |
|
1946 |
+ dec_values[perm[j]] = 0; |
|
1947 |
+ else if(p_count > 0 && n_count == 0) |
|
1948 |
+ for(j=begin;j<end;j++) |
|
1949 |
+ dec_values[perm[j]] = 1; |
|
1950 |
+ else if(p_count == 0 && n_count > 0) |
|
1951 |
+ for(j=begin;j<end;j++) |
|
1952 |
+ dec_values[perm[j]] = -1; |
|
1953 |
+ else |
|
1954 |
+ { |
|
1955 |
+ svm_parameter subparam = *param; |
|
1956 |
+ subparam.probability=0; |
|
1957 |
+ subparam.C=1.0; |
|
1958 |
+ subparam.nr_weight=2; |
|
1959 |
+ subparam.weight_label = Malloc(int,2); |
|
1960 |
+ subparam.weight = Malloc(double,2); |
|
1961 |
+ subparam.weight_label[0]=+1; |
|
1962 |
+ subparam.weight_label[1]=-1; |
|
1963 |
+ subparam.weight[0]=Cp; |
|
1964 |
+ subparam.weight[1]=Cn; |
|
1965 |
+ struct svm_model *submodel = svm_train(&subprob,&subparam); |
|
1966 |
+ for(j=begin;j<end;j++) |
|
1967 |
+ { |
|
1968 |
+ svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); |
|
1969 |
+ // ensure +1 -1 order; reason not using CV subroutine |
|
1970 |
+ dec_values[perm[j]] *= submodel->label[0]; |
|
1971 |
+ } |
|
1972 |
+ svm_destroy_model(submodel); |
|
1973 |
+ svm_destroy_param(&subparam); |
|
1974 |
+ } |
|
1975 |
+ free(subprob.x); |
|
1976 |
+ free(subprob.y); |
|
1977 |
+ } |
|
1978 |
+ sigmoid_train(prob->l,dec_values,prob->y,probA,probB); |
|
1979 |
+ free(dec_values); |
|
1980 |
+ free(perm); |
|
1981 |
+} |
|
1982 |
+ |
|
1983 |
+// Return parameter of a Laplace distribution |
|
1984 |
+double svm_svr_probability( |
|
1985 |
+ const svm_problem *prob, const svm_parameter *param) |
|
1986 |
+{ |
|
1987 |
+ int i; |
|
1988 |
+ int nr_fold = 5; |
|
1989 |
+ double *ymv = Malloc(double,prob->l); |
|
1990 |
+ double mae = 0; |
|
1991 |
+ |
|
1992 |
+ svm_parameter newparam = *param; |
|
1993 |
+ newparam.probability = 0; |
|
1994 |
+ svm_cross_validation(prob,&newparam,nr_fold,ymv); |
|
1995 |
+ for(i=0;i<prob->l;i++) |
|
1996 |
+ { |
|
1997 |
+ ymv[i]=prob->y[i]-ymv[i]; |
|
1998 |
+ mae += fabs(ymv[i]); |
|
1999 |
+ } |
|
2000 |
+ mae /= prob->l; |
|
2001 |
+ double std=sqrt(2*mae*mae); |
|
2002 |
+ int count=0; |
|
2003 |
+ mae=0; |
|
2004 |
+ for(i=0;i<prob->l;i++) |
|
2005 |
+ if (fabs(ymv[i]) > 5*std) |
|
2006 |
+ count=count+1; |
|
2007 |
+ else |
|
2008 |
+ mae+=fabs(ymv[i]); |
|
2009 |
+ mae /= (prob->l-count); |
|
2010 |
+ info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae); |
|
2011 |
+ free(ymv); |
|
2012 |
+ return mae; |
|
2013 |
+} |
|
2014 |
+ |
|
2015 |
+ |
|
2016 |
+// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data |
|
2017 |
+// perm, length l, must be allocated before calling this subroutine |
|
2018 |
+void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) |
|
2019 |
+{ |
|
2020 |
+ int l = prob->l; |
|
2021 |
+ int max_nr_class = 16; |
|
2022 |
+ int nr_class = 0; |
|
2023 |
+ int *label = Malloc(int,max_nr_class); |
|
2024 |
+ int *count = Malloc(int,max_nr_class); |
|
2025 |
+ int *data_label = Malloc(int,l); |
|
2026 |
+ int i; |
|
2027 |
+ |
|
2028 |
+ for(i=0;i<l;i++) |
|
2029 |
+ { |
|
2030 |
+ int this_label = (int)prob->y[i]; |
|
2031 |
+ int j; |
|
2032 |
+ for(j=0;j<nr_class;j++) |
|
2033 |
+ { |
|
2034 |
+ if(this_label == label[j]) |
|
2035 |
+ { |
|
2036 |
+ ++count[j]; |
|
2037 |
+ break; |
|
2038 |
+ } |
|
2039 |
+ } |
|
2040 |
+ data_label[i] = j; |
|
2041 |
+ if(j == nr_class) |
|
2042 |
+ { |
|
2043 |
+ if(nr_class == max_nr_class) |
|
2044 |
+ { |
|
2045 |
+ max_nr_class *= 2; |
|
2046 |
+ label = (int *)realloc(label,max_nr_class*sizeof(int)); |
|
2047 |
+ count = (int *)realloc(count,max_nr_class*sizeof(int)); |
|
2048 |
+ } |
|
2049 |
+ label[nr_class] = this_label; |
|
2050 |
+ count[nr_class] = 1; |
|
2051 |
+ ++nr_class; |
|
2052 |
+ } |
|
2053 |
+ } |
|
2054 |
+ |
|
2055 |
+ int *start = Malloc(int,nr_class); |
|
2056 |
+ start[0] = 0; |
|
2057 |
+ for(i=1;i<nr_class;i++) |
|
2058 |
+ start[i] = start[i-1]+count[i-1]; |
|
2059 |
+ for(i=0;i<l;i++) |
|
2060 |
+ { |
|
2061 |
+ perm[start[data_label[i]]] = i; |
|
2062 |
+ ++start[data_label[i]]; |
|
2063 |
+ } |
|
2064 |
+ start[0] = 0; |
|
2065 |
+ for(i=1;i<nr_class;i++) |
|
2066 |
+ start[i] = start[i-1]+count[i-1]; |
|
2067 |
+ |
|
2068 |
+ *nr_class_ret = nr_class; |
|
2069 |
+ *label_ret = label; |
|
2070 |
+ *start_ret = start; |
|
2071 |
+ *count_ret = count; |
|
2072 |
+ free(data_label); |
|
2073 |
+} |
|
2074 |
+ |
|
2075 |
+// |
|
2076 |
+// Interface functions |
|
2077 |
+// |
|
2078 |
+svm_model *svm_train(const svm_problem *prob, const svm_parameter *param) |
|
2079 |
+{ |
|
2080 |
+ svm_model *model = Malloc(svm_model,1); |
|
2081 |
+ model->param = *param; |
|
2082 |
+ model->free_sv = 0; // XXX |
|
2083 |
+ |
|
2084 |
+ if(param->svm_type == ONE_CLASS || |
|
2085 |
+ param->svm_type == EPSILON_SVR || |
|
2086 |
+ param->svm_type == NU_SVR) |
|
2087 |
+ { |
|
2088 |
+ // regression or one-class-svm |
|
2089 |
+ model->nr_class = 2; |
|
2090 |
+ model->label = NULL; |
|
2091 |
+ model->nSV = NULL; |
|
2092 |
+ model->probA = NULL; model->probB = NULL; |
|
2093 |
+ model->sv_coef = Malloc(double *,1); |
|
2094 |
+ |
|
2095 |
+ if(param->probability && |
|
2096 |
+ (param->svm_type == EPSILON_SVR || |
|
2097 |
+ param->svm_type == NU_SVR)) |
|
2098 |
+ { |
|
2099 |
+ model->probA = Malloc(double,1); |
|
2100 |
+ model->probA[0] = svm_svr_probability(prob,param); |
|
2101 |
+ } |
|
2102 |
+ |
|
2103 |
+ decision_function f = svm_train_one(prob,param,0,0); |
|
2104 |
+ model->rho = Malloc(double,1); |
|
2105 |
+ model->rho[0] = f.rho; |
|
2106 |
+ |
|
2107 |
+ int nSV = 0; |
|
2108 |
+ int i; |
|
2109 |
+ for(i=0;i<prob->l;i++) |
|
2110 |
+ if(fabs(f.alpha[i]) > 0) ++nSV; |
|
2111 |
+ model->l = nSV; |
|
2112 |
+ model->SV = Malloc(svm_node *,nSV); |
|
2113 |
+ model->sv_coef[0] = Malloc(double,nSV); |
|
2114 |
+ int j = 0; |
|
2115 |
+ for(i=0;i<prob->l;i++) |
|
2116 |
+ if(fabs(f.alpha[i]) > 0) |
|
2117 |
+ { |
|
2118 |
+ model->SV[j] = prob->x[i]; |
|
2119 |
+ model->sv_coef[0][j] = f.alpha[i]; |
|
2120 |
+ ++j; |
|
2121 |
+ } |
|
2122 |
+ |
|
2123 |
+ free(f.alpha); |
|
2124 |
+ } |
|
2125 |
+ else |
|
2126 |
+ { |
|
2127 |
+ // classification |
|
2128 |
+ int l = prob->l; |
|
2129 |
+ int nr_class; |
|
2130 |
+ int *label = NULL; |
|
2131 |
+ int *start = NULL; |
|
2132 |
+ int *count = NULL; |
|
2133 |
+ int *perm = Malloc(int,l); |
|
2134 |
+ |
|
2135 |
+ // group training data of the same class |
|
2136 |
+ svm_group_classes(prob,&nr_class,&label,&start,&count,perm); |
|
2137 |
+ svm_node **x = Malloc(svm_node *,l); |
|
2138 |
+ int i; |
|
2139 |
+ for(i=0;i<l;i++) |
|
2140 |
+ x[i] = prob->x[perm[i]]; |
|
2141 |
+ |
|
2142 |
+ // calculate weighted C |
|
2143 |
+ |
|
2144 |
+ double *weighted_C = Malloc(double, nr_class); |
|
2145 |
+ for(i=0;i<nr_class;i++) |
|
2146 |
+ weighted_C[i] = param->C; |
|
2147 |
+ for(i=0;i<param->nr_weight;i++) |
|
2148 |
+ { |
|
2149 |
+ int j; |
|
2150 |
+ for(j=0;j<nr_class;j++) |
|
2151 |
+ if(param->weight_label[i] == label[j]) |
|
2152 |
+ break; |
|
2153 |
+ if(j == nr_class) |
|
2154 |
+ fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]); |
|
2155 |
+ else |
|
2156 |
+ weighted_C[j] *= param->weight[i]; |
|
2157 |
+ } |
|
2158 |
+ |
|
2159 |
+ // train k*(k-1)/2 models |
|
2160 |
+ |
|
2161 |
+ bool *nonzero = Malloc(bool,l); |
|
2162 |
+ for(i=0;i<l;i++) |
|
2163 |
+ nonzero[i] = false; |
|
2164 |
+ decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2); |
|
2165 |
+ |
|
2166 |
+ double *probA=NULL,*probB=NULL; |
|
2167 |
+ if (param->probability) |
|
2168 |
+ { |
|
2169 |
+ probA=Malloc(double,nr_class*(nr_class-1)/2); |
|
2170 |
+ probB=Malloc(double,nr_class*(nr_class-1)/2); |
|
2171 |
+ } |
|
2172 |
+ |
|
2173 |
+ int p = 0; |
|
2174 |
+ for(i=0;i<nr_class;i++) |
|
2175 |
+ for(int j=i+1;j<nr_class;j++) |
|
2176 |
+ { |
|
2177 |
+ svm_problem sub_prob; |
|
2178 |
+ int si = start[i], sj = start[j]; |
|
2179 |
+ int ci = count[i], cj = count[j]; |
|
2180 |
+ sub_prob.l = ci+cj; |
|
2181 |
+ sub_prob.x = Malloc(svm_node *,sub_prob.l); |
|
2182 |
+ sub_prob.y = Malloc(double,sub_prob.l); |
|
2183 |
+ int k; |
|
2184 |
+ for(k=0;k<ci;k++) |
|
2185 |
+ { |
|
2186 |
+ sub_prob.x[k] = x[si+k]; |
|
2187 |
+ sub_prob.y[k] = +1; |
|
2188 |
+ } |
|
2189 |
+ for(k=0;k<cj;k++) |
|
2190 |
+ { |
|
2191 |
+ sub_prob.x[ci+k] = x[sj+k]; |
|
2192 |
+ sub_prob.y[ci+k] = -1; |
|
2193 |
+ } |
|
2194 |
+ |
|
2195 |
+ if(param->probability) |
|
2196 |
+ svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]); |
|
2197 |
+ |
|
2198 |
+ f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); |
|
2199 |
+ for(k=0;k<ci;k++) |
|
2200 |
+ if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0) |
|
2201 |
+ nonzero[si+k] = true; |
|
2202 |
+ for(k=0;k<cj;k++) |
|
2203 |
+ if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0) |
|
2204 |
+ nonzero[sj+k] = true; |
|
2205 |
+ free(sub_prob.x); |
|
2206 |
+ free(sub_prob.y); |
|
2207 |
+ ++p; |
|
2208 |
+ } |
|
2209 |
+ |
|
2210 |
+ // build output |
|
2211 |
+ |
|
2212 |
+ model->nr_class = nr_class; |
|
2213 |
+ |
|
2214 |
+ model->label = Malloc(int,nr_class); |
|
2215 |
+ for(i=0;i<nr_class;i++) |
|
2216 |
+ model->label[i] = label[i]; |
|
2217 |
+ |
|
2218 |
+ model->rho = Malloc(double,nr_class*(nr_class-1)/2); |
|
2219 |
+ for(i=0;i<nr_class*(nr_class-1)/2;i++) |
|
2220 |
+ model->rho[i] = f[i].rho; |
|
2221 |
+ |
|
2222 |
+ if(param->probability) |
|
2223 |
+ { |
|
2224 |
+ model->probA = Malloc(double,nr_class*(nr_class-1)/2); |
|
2225 |
+ model->probB = Malloc(double,nr_class*(nr_class-1)/2); |
|
2226 |
+ for(i=0;i<nr_class*(nr_class-1)/2;i++) |
|
2227 |
+ { |
|
2228 |
+ model->probA[i] = probA[i]; |
|
2229 |
+ model->probB[i] = probB[i]; |
|
2230 |
+ } |
|
2231 |
+ } |
|
2232 |
+ else |
|
2233 |
+ { |
|
2234 |
+ model->probA=NULL; |
|
2235 |
+ model->probB=NULL; |
|
2236 |
+ } |
|
2237 |
+ |
|
2238 |
+ int total_sv = 0; |
|
2239 |
+ int *nz_count = Malloc(int,nr_class); |
|
2240 |
+ model->nSV = Malloc(int,nr_class); |
|
2241 |
+ for(i=0;i<nr_class;i++) |
|
2242 |
+ { |
|
2243 |
+ int nSV = 0; |
|
2244 |
+ for(int j=0;j<count[i];j++) |
|
2245 |
+ if(nonzero[start[i]+j]) |
|
2246 |
+ { |
|
2247 |
+ ++nSV; |
|
2248 |
+ ++total_sv; |
|
2249 |
+ } |
|
2250 |
+ model->nSV[i] = nSV; |
|
2251 |
+ nz_count[i] = nSV; |
|
2252 |
+ } |
|
2253 |
+ |
|
2254 |
+ info("Total nSV = %d\n",total_sv); |
|
2255 |
+ |
|
2256 |
+ model->l = total_sv; |
|
2257 |
+ model->SV = Malloc(svm_node *,total_sv); |
|
2258 |
+ p = 0; |
|
2259 |
+ for(i=0;i<l;i++) |
|
2260 |
+ if(nonzero[i]) model->SV[p++] = x[i]; |
|
2261 |
+ |
|
2262 |
+ int *nz_start = Malloc(int,nr_class); |
|
2263 |
+ nz_start[0] = 0; |
|
2264 |
+ for(i=1;i<nr_class;i++) |
|
2265 |
+ nz_start[i] = nz_start[i-1]+nz_count[i-1]; |
|
2266 |
+ |
|
2267 |
+ model->sv_coef = Malloc(double *,nr_class-1); |
|
2268 |
+ for(i=0;i<nr_class-1;i++) |
|
2269 |
+ model->sv_coef[i] = Malloc(double,total_sv); |
|
2270 |
+ |
|
2271 |
+ p = 0; |
|
2272 |
+ for(i=0;i<nr_class;i++) |
|
2273 |
+ for(int j=i+1;j<nr_class;j++) |
|
2274 |
+ { |
|
2275 |
+ // classifier (i,j): coefficients with |
|
2276 |
+ // i are in sv_coef[j-1][nz_start[i]...], |
|
2277 |
+ // j are in sv_coef[i][nz_start[j]...] |
|
2278 |
+ |
|
2279 |
+ int si = start[i]; |
|
2280 |
+ int sj = start[j]; |
|
2281 |
+ int ci = count[i]; |
|
2282 |
+ int cj = count[j]; |
|
2283 |
+ |
|
2284 |
+ int q = nz_start[i]; |
|
2285 |
+ int k; |
|
2286 |
+ for(k=0;k<ci;k++) |
|
2287 |
+ if(nonzero[si+k]) |
|
2288 |
+ model->sv_coef[j-1][q++] = f[p].alpha[k]; |
|
2289 |
+ q = nz_start[j]; |
|
2290 |
+ for(k=0;k<cj;k++) |
|
2291 |
+ if(nonzero[sj+k]) |
|
2292 |
+ model->sv_coef[i][q++] = f[p].alpha[ci+k]; |
|
2293 |
+ ++p; |
|
2294 |
+ } |
|
2295 |
+ |
|
2296 |
+ free(label); |
|
2297 |
+ free(probA); |
|
2298 |
+ free(probB); |
|
2299 |
+ free(count); |
|
2300 |
+ free(perm); |
|
2301 |
+ free(start); |
|
2302 |
+ free(x); |
|
2303 |
+ free(weighted_C); |
|
2304 |
+ free(nonzero); |
|
2305 |
+ for(i=0;i<nr_class*(nr_class-1)/2;i++) |
|
2306 |
+ free(f[i].alpha); |
|
2307 |
+ free(f); |
|
2308 |
+ free(nz_count); |
|
2309 |
+ free(nz_start); |
|
2310 |
+ } |
|
2311 |
+ return model; |
|
2312 |
+} |
|
2313 |
+ |
|
2314 |
+// Stratified cross validation |
|
2315 |
+void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target) |
|
2316 |
+{ |
|
2317 |
+ int i; |
|
2318 |
+ int *fold_start = Malloc(int,nr_fold+1); |
|
2319 |
+ int l = prob->l; |
|
2320 |
+ int *perm = Malloc(int,l); |
|
2321 |
+ int nr_class; |
|
2322 |
+ |
|
2323 |
+ // stratified cv may not give leave-one-out rate |
|
2324 |
+ // Each class to l folds -> some folds may have zero elements |
|
2325 |
+ if((param->svm_type == C_SVC || |
|
2326 |
+ param->svm_type == NU_SVC) && nr_fold < l) |
|
2327 |
+ { |
|
2328 |
+ int *start = NULL; |
|
2329 |
+ int *label = NULL; |
|
2330 |
+ int *count = NULL; |
|
2331 |
+ svm_group_classes(prob,&nr_class,&label,&start,&count,perm); |
|
2332 |
+ |
|
2333 |
+ // random shuffle and then data grouped by fold using the array perm |
|
2334 |
+ int *fold_count = Malloc(int,nr_fold); |
|
2335 |
+ int c; |
|
2336 |
+ int *index = Malloc(int,l); |
|
2337 |
+ for(i=0;i<l;i++) |
|
2338 |
+ index[i]=perm[i]; |
|
2339 |
+ for (c=0; c<nr_class; c++) |
|
2340 |
+ for(i=0;i<count[c];i++) |
|
2341 |
+ { |
|
2342 |
+ int j = i+rand()%(count[c]-i); |
|
2343 |
+ swap(index[start[c]+j],index[start[c]+i]); |
|
2344 |
+ } |
|
2345 |
+ for(i=0;i<nr_fold;i++) |
|
2346 |
+ { |
|
2347 |
+ fold_count[i] = 0; |
|
2348 |
+ for (c=0; c<nr_class;c++) |
|
2349 |
+ fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold; |
|
2350 |
+ } |
|
2351 |
+ fold_start[0]=0; |
|
2352 |
+ for (i=1;i<=nr_fold;i++) |
|
2353 |
+ fold_start[i] = fold_start[i-1]+fold_count[i-1]; |
|
2354 |
+ for (c=0; c<nr_class;c++) |
|
2355 |
+ for(i=0;i<nr_fold;i++) |
|
2356 |
+ { |
|
2357 |
+ int begin = start[c]+i*count[c]/nr_fold; |
|
2358 |
+ int end = start[c]+(i+1)*count[c]/nr_fold; |
|
2359 |
+ for(int j=begin;j<end;j++) |
|
2360 |
+ { |
|
2361 |
+ perm[fold_start[i]] = index[j]; |
|
2362 |
+ fold_start[i]++; |
|
2363 |
+ } |
|
2364 |
+ } |
|
2365 |
+ fold_start[0]=0; |
|
2366 |
+ for (i=1;i<=nr_fold;i++) |
|
2367 |
+ fold_start[i] = fold_start[i-1]+fold_count[i-1]; |
|
2368 |
+ free(start); |
|
2369 |
+ free(label); |
|
2370 |
+ free(count); |
|
2371 |
+ free(index); |
|
2372 |
+ free(fold_count); |
|
2373 |
+ } |
|
2374 |
+ else |
|
2375 |
+ { |
|
2376 |
+ for(i=0;i<l;i++) perm[i]=i; |
|
2377 |
+ for(i=0;i<l;i++) |
|
2378 |
+ { |
|
2379 |
+ int j = i+rand()%(l-i); |
|
2380 |
+ swap(perm[i],perm[j]); |
|
2381 |
+ } |
|
2382 |
+ for(i=0;i<=nr_fold;i++) |
|
2383 |
+ fold_start[i]=i*l/nr_fold; |
|
2384 |
+ } |
|
2385 |
+ |
|
2386 |
+ for(i=0;i<nr_fold;i++) |
|
2387 |
+ { |
|
2388 |
+ int begin = fold_start[i]; |
|
2389 |
+ int end = fold_start[i+1]; |
|
2390 |
+ int j,k; |
|
2391 |
+ struct svm_problem subprob; |
|
2392 |
+ |
|
2393 |
+ subprob.l = l-(end-begin); |
|
2394 |
+ subprob.x = Malloc(struct svm_node*,subprob.l); |
|
2395 |
+ subprob.y = Malloc(double,subprob.l); |
|
2396 |
+ |
|
2397 |
+ k=0; |
|
2398 |
+ for(j=0;j<begin;j++) |
|
2399 |
+ { |
|
2400 |
+ subprob.x[k] = prob->x[perm[j]]; |
|
2401 |
+ subprob.y[k] = prob->y[perm[j]]; |
|
2402 |
+ ++k; |
|
2403 |
+ } |
|
2404 |
+ for(j=end;j<l;j++) |
|
2405 |
+ { |
|
2406 |
+ subprob.x[k] = prob->x[perm[j]]; |
|
2407 |
+ subprob.y[k] = prob->y[perm[j]]; |
|
2408 |
+ ++k; |
|
2409 |
+ } |
|
2410 |
+ struct svm_model *submodel = svm_train(&subprob,param); |
|
2411 |
+ if(param->probability && |
|
2412 |
+ (param->svm_type == C_SVC || param->svm_type == NU_SVC)) |
|
2413 |
+ { |
|
2414 |
+ double *prob_estimates=Malloc(double,svm_get_nr_class(submodel)); |
|
2415 |
+ for(j=begin;j<end;j++) |
|
2416 |
+ target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates); |
|
2417 |
+ free(prob_estimates); |
|
2418 |
+ } |
|
2419 |
+ else |
|
2420 |
+ for(j=begin;j<end;j++) |
|
2421 |
+ target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]); |
|
2422 |
+ svm_destroy_model(submodel); |
|
2423 |
+ free(subprob.x); |
|
2424 |
+ free(subprob.y); |
|
2425 |
+ } |
|
2426 |
+ free(fold_start); |
|
2427 |
+ free(perm); |
|
2428 |
+} |
|
2429 |
+ |
|
2430 |
+ |
|
2431 |
+int svm_get_svm_type(const svm_model *model) |
|
2432 |
+{ |
|
2433 |
+ return model->param.svm_type; |
|
2434 |
+} |
|
2435 |
+ |
|
2436 |
+int svm_get_nr_class(const svm_model *model) |
|
2437 |
+{ |
|
2438 |
+ return model->nr_class; |
|
2439 |
+} |
|
2440 |
+ |
|
2441 |
+void svm_get_labels(const svm_model *model, int* label) |
|
2442 |
+{ |
|
2443 |
+ if (model->label != NULL) |
|
2444 |
+ for(int i=0;i<model->nr_class;i++) |
|
2445 |
+ label[i] = model->label[i]; |
|
2446 |
+} |
|
2447 |
+ |
|
2448 |
+double svm_get_svr_probability(const svm_model *model) |
|
2449 |
+{ |
|
2450 |
+ if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && |
|
2451 |
+ model->probA!=NULL) |
|
2452 |
+ return model->probA[0]; |
|
2453 |
+ else |
|
2454 |
+ { |
|
2455 |
+ info("Model doesn't contain information for SVR probability inference\n"); |
|
2456 |
+ return 0; |
|
2457 |
+ } |
|
2458 |
+} |
|
2459 |
+ |
|
2460 |
+void svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values) |
|
2461 |
+{ |
|
2462 |
+ if(model->param.svm_type == ONE_CLASS || |
|
2463 |
+ model->param.svm_type == EPSILON_SVR || |
|
2464 |
+ model->param.svm_type == NU_SVR) |
|
2465 |
+ { |
|
2466 |
+ double *sv_coef = model->sv_coef[0]; |
|
2467 |
+ double sum = 0; |
|
2468 |
+ for(int i=0;i<model->l;i++) |
|
2469 |
+ sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param); |
|
2470 |
+ sum -= model->rho[0]; |
|
2471 |
+ *dec_values = sum; |
|
2472 |
+ } |
|
2473 |
+ else |
|
2474 |
+ { |
|
2475 |
+ int i; |
|
2476 |
+ int nr_class = model->nr_class; |
|
2477 |
+ int l = model->l; |
|
2478 |
+ |
|
2479 |
+ double *kvalue = Malloc(double,l); |
|
2480 |
+ for(i=0;i<l;i++) |
|
2481 |
+ kvalue[i] = Kernel::k_function(x,model->SV[i],model->param); |
|
2482 |
+ |
|
2483 |
+ int *start = Malloc(int,nr_class); |
|
2484 |
+ start[0] = 0; |
|
2485 |
+ for(i=1;i<nr_class;i++) |
|
2486 |
+ start[i] = start[i-1]+model->nSV[i-1]; |
|
2487 |
+ |
|
2488 |
+ int p=0; |
|
2489 |
+ for(i=0;i<nr_class;i++) |
|
2490 |
+ for(int j=i+1;j<nr_class;j++) |
|
2491 |
+ { |
|
2492 |
+ double sum = 0; |
|
2493 |
+ int si = start[i]; |
|
2494 |
+ int sj = start[j]; |
|
2495 |
+ int ci = model->nSV[i]; |
|
2496 |
+ int cj = model->nSV[j]; |
|
2497 |
+ |
|
2498 |
+ int k; |
|
2499 |
+ double *coef1 = model->sv_coef[j-1]; |
|
2500 |
+ double *coef2 = model->sv_coef[i]; |
|
2501 |
+ for(k=0;k<ci;k++) |
|
2502 |
+ sum += coef1[si+k] * kvalue[si+k]; |
|
2503 |
+ for(k=0;k<cj;k++) |
|
2504 |
+ sum += coef2[sj+k] * kvalue[sj+k]; |
|
2505 |
+ sum -= model->rho[p]; |
|
2506 |
+ dec_values[p] = sum; |
|
2507 |
+ p++; |
|
2508 |
+ } |
|
2509 |
+ |
|
2510 |
+ free(kvalue); |
|
2511 |
+ free(start); |
|
2512 |
+ } |
|
2513 |
+} |
|
2514 |
+ |
|
2515 |
+double svm_predict(const svm_model *model, const svm_node *x) |
|
2516 |
+{ |
|
2517 |
+ if(model->param.svm_type == ONE_CLASS || |
|
2518 |
+ model->param.svm_type == EPSILON_SVR || |
|
2519 |
+ model->param.svm_type == NU_SVR) |
|
2520 |
+ { |
|
2521 |
+ double res; |
|
2522 |
+ svm_predict_values(model, x, &res); |
|
2523 |
+ |
|
2524 |
+ if(model->param.svm_type == ONE_CLASS) |
|
2525 |
+ return (res>0)?1:-1; |
|
2526 |
+ else |
|
2527 |
+ return res; |
|
2528 |
+ } |
|
2529 |
+ else |
|
2530 |
+ { |
|
2531 |
+ int i; |
|
2532 |
+ int nr_class = model->nr_class; |
|
2533 |
+ double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); |
|
2534 |
+ svm_predict_values(model, x, dec_values); |
|
2535 |
+ |
|
2536 |
+ int *vote = Malloc(int,nr_class); |
|
2537 |
+ for(i=0;i<nr_class;i++) |
|
2538 |
+ vote[i] = 0; |
|
2539 |
+ int pos=0; |
|
2540 |
+ for(i=0;i<nr_class;i++) |
|
2541 |
+ for(int j=i+1;j<nr_class;j++) |
|
2542 |
+ { |
|
2543 |
+ if(dec_values[pos++] > 0) |
|
2544 |
+ ++vote[i]; |
|
2545 |
+ else |
|
2546 |
+ ++vote[j]; |
|
2547 |
+ } |
|
2548 |
+ |
|
2549 |
+ int vote_max_idx = 0; |
|
2550 |
+ for(i=1;i<nr_class;i++) |
|
2551 |
+ if(vote[i] > vote[vote_max_idx]) |
|
2552 |
+ vote_max_idx = i; |
|
2553 |
+ free(vote); |
|
2554 |
+ free(dec_values); |
|
2555 |
+ return model->label[vote_max_idx]; |
|
2556 |
+ } |
|
2557 |
+} |
|
2558 |
+ |
|
2559 |
+double svm_predict_probability( |
|
2560 |
+ const svm_model *model, const svm_node *x, double *prob_estimates) |
|
2561 |
+{ |
|
2562 |
+ if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && |
|
2563 |
+ model->probA!=NULL && model->probB!=NULL) |
|
2564 |
+ { |
|
2565 |
+ int i; |
|
2566 |
+ int nr_class = model->nr_class; |
|
2567 |
+ double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); |
|
2568 |
+ svm_predict_values(model, x, dec_values); |
|
2569 |
+ |
|
2570 |
+ double min_prob=1e-7; |
|
2571 |
+ double **pairwise_prob=Malloc(double *,nr_class); |
|
2572 |
+ for(i=0;i<nr_class;i++) |
|
2573 |
+ pairwise_prob[i]=Malloc(double,nr_class); |
|
2574 |
+ int k=0; |
|
2575 |
+ for(i=0;i<nr_class;i++) |
|
2576 |
+ for(int j=i+1;j<nr_class;j++) |
|
2577 |
+ { |
|
2578 |
+ pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob); |
|
2579 |
+ pairwise_prob[j][i]=1-pairwise_prob[i][j]; |
|
2580 |
+ k++; |
|
2581 |
+ } |
|
2582 |
+ multiclass_probability(nr_class,pairwise_prob,prob_estimates); |
|
2583 |
+ |
|
2584 |
+ int prob_max_idx = 0; |
|
2585 |
+ for(i=1;i<nr_class;i++) |
|
2586 |
+ if(prob_estimates[i] > prob_estimates[prob_max_idx]) |
|
2587 |
+ prob_max_idx = i; |
|
2588 |
+ for(i=0;i<nr_class;i++) |
|
2589 |
+ free(pairwise_prob[i]); |
|
2590 |
+ free(dec_values); |
|
2591 |
+ free(pairwise_prob); |
|
2592 |
+ return model->label[prob_max_idx]; |
|
2593 |
+ } |
|
2594 |
+ else |
|
2595 |
+ return svm_predict(model, x); |
|
2596 |
+} |
|
2597 |
+ |
|
2598 |
+const char *svm_type_table[] = |
|
2599 |
+{ |
|
2600 |
+ "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL |
|
2601 |
+}; |
|
2602 |
+ |
|
2603 |
+const char *kernel_type_table[]= |
|
2604 |
+{ |
|
2605 |
+ "linear","polynomial","rbf","sigmoid","precomputed",NULL |
|
2606 |
+}; |
|
2607 |
+ |
|
2608 |
+int svm_save_model(const char *model_file_name, const svm_model *model) |
|
2609 |
+{ |
|
2610 |
+ FILE *fp = fopen(model_file_name,"w"); |
|
2611 |
+ if(fp==NULL) return -1; |
|
2612 |
+ |
|
2613 |
+ const svm_parameter& param = model->param; |
|
2614 |
+ |
|
2615 |
+ fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]); |
|
2616 |
+ fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]); |
|
2617 |
+ |
|
2618 |
+ if(param.kernel_type == POLY) |
|
2619 |
+ fprintf(fp,"degree %d\n", param.degree); |
|
2620 |
+ |
|
2621 |
+ if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) |
|
2622 |
+ fprintf(fp,"gamma %g\n", param.gamma); |
|
2623 |
+ |
|
2624 |
+ if(param.kernel_type == POLY || param.kernel_type == SIGMOID) |
|
2625 |
+ fprintf(fp,"coef0 %g\n", param.coef0); |
|
2626 |
+ |
|
2627 |
+ int nr_class = model->nr_class; |
|
2628 |
+ int l = model->l; |
|
2629 |
+ fprintf(fp, "nr_class %d\n", nr_class); |
|
2630 |
+ fprintf(fp, "total_sv %d\n",l); |
|
2631 |
+ |
|
2632 |
+ { |
|
2633 |
+ fprintf(fp, "rho"); |
|
2634 |
+ for(int i=0;i<nr_class*(nr_class-1)/2;i++) |
|
2635 |
+ fprintf(fp," %g",model->rho[i]); |
|
2636 |
+ fprintf(fp, "\n"); |
|
2637 |
+ } |
|
2638 |
+ |
|
2639 |
+ if(model->label) |
|
2640 |
+ { |
|
2641 |
+ fprintf(fp, "label"); |
|
2642 |
+ for(int i=0;i<nr_class;i++) |
|
2643 |
+ fprintf(fp," %d",model->label[i]); |
|
2644 |
+ fprintf(fp, "\n"); |
|
2645 |
+ } |
|
2646 |
+ |
|
2647 |
+ if(model->probA) // regression has probA only |
|
2648 |
+ { |
|
2649 |
+ fprintf(fp, "probA"); |
|
2650 |
+ for(int i=0;i<nr_class*(nr_class-1)/2;i++) |
|
2651 |
+ fprintf(fp," %g",model->probA[i]); |
|
2652 |
+ fprintf(fp, "\n"); |
|
2653 |
+ } |
|
2654 |
+ if(model->probB) |
|
2655 |
+ { |
|
2656 |
+ fprintf(fp, "probB"); |
|
2657 |
+ for(int i=0;i<nr_class*(nr_class-1)/2;i++) |
|
2658 |
+ fprintf(fp," %g",model->probB[i]); |
|
2659 |
+ fprintf(fp, "\n"); |
|
2660 |
+ } |
|
2661 |
+ |
|
2662 |
+ if(model->nSV) |
|
2663 |
+ { |
|
2664 |
+ fprintf(fp, "nr_sv"); |
|
2665 |
+ for(int i=0;i<nr_class;i++) |
|
2666 |
+ fprintf(fp," %d",model->nSV[i]); |
|
2667 |
+ fprintf(fp, "\n"); |
|
2668 |
+ } |
|
2669 |
+ |
|
2670 |
+ fprintf(fp, "SV\n"); |
|
2671 |
+ const double * const *sv_coef = model->sv_coef; |
|
2672 |
+ const svm_node * const *SV = model->SV; |
|
2673 |
+ |
|
2674 |
+ for(int i=0;i<l;i++) |
|
2675 |
+ { |
|
2676 |
+ for(int j=0;j<nr_class-1;j++) |
|
2677 |
+ fprintf(fp, "%.16g ",sv_coef[j][i]); |
|
2678 |
+ |
|
2679 |
+ const svm_node *p = SV[i]; |
|
2680 |
+ |
|
2681 |
+ if(param.kernel_type == PRECOMPUTED) |
|
2682 |
+ fprintf(fp,"0:%d ",(int)(p->value)); |
|
2683 |
+ else |
|
2684 |
+ while(p->index != -1) |
|
2685 |
+ { |
|
2686 |
+ fprintf(fp,"%d:%.8g ",p->index,p->value); |
|
2687 |
+ p++; |
|
2688 |
+ } |
|
2689 |
+ fprintf(fp, "\n"); |
|
2690 |
+ } |
|
2691 |
+ if (ferror(fp) != 0 || fclose(fp) != 0) return -1; |
|
2692 |
+ else return 0; |
|
2693 |
+} |
|
2694 |
+ |
|
2695 |
+svm_model *svm_load_model(const char *model_file_name) |
|
2696 |
+{ |
|
2697 |
+ FILE *fp = fopen(model_file_name,"rb"); |
|
2698 |
+ if(fp==NULL) return NULL; |
|
2699 |
+ |
|
2700 |
+ // read parameters |
|
2701 |
+ |
|
2702 |
+ svm_model *model = Malloc(svm_model,1); |
|
2703 |
+ svm_parameter& param = model->param; |
|
2704 |
+ model->rho = NULL; |
|
2705 |
+ model->probA = NULL; |
|
2706 |
+ model->probB = NULL; |
|
2707 |
+ model->label = NULL; |
|
2708 |
+ model->nSV = NULL; |
|
2709 |
+ |
|
2710 |
+ char cmd[81]; |
|
2711 |
+ while(1) |
|
2712 |
+ { |
|
2713 |
+ fscanf(fp,"%80s",cmd); |
|
2714 |
+ |
|
2715 |
+ if(strcmp(cmd,"svm_type")==0) |
|
2716 |
+ { |
|
2717 |
+ fscanf(fp,"%80s",cmd); |
|
2718 |
+ int i; |
|
2719 |
+ for(i=0;svm_type_table[i];i++) |
|
2720 |
+ { |
|
2721 |
+ if(strcmp(svm_type_table[i],cmd)==0) |
|
2722 |
+ { |
|
2723 |
+ param.svm_type=i; |
|
2724 |
+ break; |
|
2725 |
+ } |
|
2726 |
+ } |
|
2727 |
+ if(svm_type_table[i] == NULL) |
|
2728 |
+ { |
|
2729 |
+ fprintf(stderr,"unknown svm type.\n"); |
|
2730 |
+ free(model->rho); |
|
2731 |
+ free(model->label); |
|
2732 |
+ free(model->nSV); |
|
2733 |
+ free(model); |
|
2734 |
+ return NULL; |
|
2735 |
+ } |
|
2736 |
+ } |
|
2737 |
+ else if(strcmp(cmd,"kernel_type")==0) |
|
2738 |
+ { |
|
2739 |
+ fscanf(fp,"%80s",cmd); |
|
2740 |
+ int i; |
|
2741 |
+ for(i=0;kernel_type_table[i];i++) |
|
2742 |
+ { |
|
2743 |
+ if(strcmp(kernel_type_table[i],cmd)==0) |
|
2744 |
+ { |
|
2745 |
+ param.kernel_type=i; |
|
2746 |
+ break; |
|
2747 |
+ } |
|
2748 |
+ } |
|
2749 |
+ if(kernel_type_table[i] == NULL) |
|
2750 |
+ { |
|
2751 |
+ fprintf(stderr,"unknown kernel function.\n"); |
|
2752 |
+ free(model->rho); |
|
2753 |
+ free(model->label); |
|
2754 |
+ free(model->nSV); |
|
2755 |
+ free(model); |
|
2756 |
+ return NULL; |
|
2757 |
+ } |
|
2758 |
+ } |
|
2759 |
+ else if(strcmp(cmd,"degree")==0) |
|
2760 |
+ fscanf(fp,"%d",¶m.degree); |
|
2761 |
+ else if(strcmp(cmd,"gamma")==0) |
|
2762 |
+ fscanf(fp,"%lf",¶m.gamma); |
|
2763 |
+ else if(strcmp(cmd,"coef0")==0) |
|
2764 |
+ fscanf(fp,"%lf",¶m.coef0); |
|
2765 |
+ else if(strcmp(cmd,"nr_class")==0) |
|
2766 |
+ fscanf(fp,"%d",&model->nr_class); |
|
2767 |
+ else if(strcmp(cmd,"total_sv")==0) |
|
2768 |
+ fscanf(fp,"%d",&model->l); |
|
2769 |
+ else if(strcmp(cmd,"rho")==0) |
|
2770 |
+ { |
|
2771 |
+ int n = model->nr_class * (model->nr_class-1)/2; |
|
2772 |
+ model->rho = Malloc(double,n); |
|
2773 |
+ for(int i=0;i<n;i++) |
|
2774 |
+ fscanf(fp,"%lf",&model->rho[i]); |
|
2775 |
+ } |
|
2776 |
+ else if(strcmp(cmd,"label")==0) |
|
2777 |
+ { |
|
2778 |
+ int n = model->nr_class; |
|
2779 |
+ model->label = Malloc(int,n); |
|
2780 |
+ for(int i=0;i<n;i++) |
|
2781 |
+ fscanf(fp,"%d",&model->label[i]); |
|
2782 |
+ } |
|
2783 |
+ else if(strcmp(cmd,"probA")==0) |
|
2784 |
+ { |
|
2785 |
+ int n = model->nr_class * (model->nr_class-1)/2; |
|
2786 |
+ model->probA = Malloc(double,n); |
|
2787 |
+ for(int i=0;i<n;i++) |
|
2788 |
+ fscanf(fp,"%lf",&model->probA[i]); |
|
2789 |
+ } |
|
2790 |
+ else if(strcmp(cmd,"probB")==0) |
|
2791 |
+ { |
|
2792 |
+ int n = model->nr_class * (model->nr_class-1)/2; |
|
2793 |
+ model->probB = Malloc(double,n); |
|
2794 |
+ for(int i=0;i<n;i++) |
|
2795 |
+ fscanf(fp,"%lf",&model->probB[i]); |
|
2796 |
+ } |
|
2797 |
+ else if(strcmp(cmd,"nr_sv")==0) |
|
2798 |
+ { |
|
2799 |
+ int n = model->nr_class; |
|
2800 |
+ model->nSV = Malloc(int,n); |
|
2801 |
+ for(int i=0;i<n;i++) |
|
2802 |
+ fscanf(fp,"%d",&model->nSV[i]); |
|
2803 |
+ } |
|
2804 |
+ else if(strcmp(cmd,"SV")==0) |
|
2805 |
+ { |
|
2806 |
+ while(1) |
|
2807 |
+ { |
|
2808 |
+ int c = getc(fp); |
|
2809 |
+ if(c==EOF || c=='\n') break; |
|
2810 |
+ } |
|
2811 |
+ break; |
|
2812 |
+ } |
|
2813 |
+ else |
|
2814 |
+ { |
|
2815 |
+ fprintf(stderr,"unknown text in model file: [%s]\n",cmd); |
|
2816 |
+ free(model->rho); |
|
2817 |
+ free(model->label); |
|
2818 |
+ free(model->nSV); |
|
2819 |
+ free(model); |
|
2820 |
+ return NULL; |
|
2821 |
+ } |
|
2822 |
+ } |
|
2823 |
+ |
|
2824 |
+ // read sv_coef and SV |
|
2825 |
+ |
|
2826 |
+ int elements = 0; |
|
2827 |
+ long pos = ftell(fp); |
|
2828 |
+ |
|
2829 |
+ while(1) |
|
2830 |
+ { |
|
2831 |
+ int c = fgetc(fp); |
|
2832 |
+ switch(c) |
|
2833 |
+ { |
|
2834 |
+ case '\n': |
|
2835 |
+ // count the '-1' element |
|
2836 |
+ case ':': |
|
2837 |
+ ++elements; |
|
2838 |
+ break; |
|
2839 |
+ case EOF: |
|
2840 |
+ goto out; |
|
2841 |
+ default: |
|
2842 |
+ ; |
|
2843 |
+ } |
|
2844 |
+ } |
|
2845 |
+out: |
|
2846 |
+ fseek(fp,pos,SEEK_SET); |
|
2847 |
+ |
|
2848 |
+ int m = model->nr_class - 1; |
|
2849 |
+ int l = model->l; |
|
2850 |
+ model->sv_coef = Malloc(double *,m); |
|
2851 |
+ int i; |
|
2852 |
+ for(i=0;i<m;i++) |
|
2853 |
+ model->sv_coef[i] = Malloc(double,l); |
|
2854 |
+ model->SV = Malloc(svm_node*,l); |
|
2855 |
+ svm_node *x_space=NULL; |
|
2856 |
+ if(l>0) x_space = Malloc(svm_node,elements); |
|
2857 |
+ |
|
2858 |
+ int j=0; |
|
2859 |
+ for(i=0;i<l;i++) |
|
2860 |
+ { |
|
2861 |
+ model->SV[i] = &x_space[j]; |
|
2862 |
+ for(int k=0;k<m;k++) |
|
2863 |
+ fscanf(fp,"%lf",&model->sv_coef[k][i]); |
|
2864 |
+ while(1) |
|
2865 |
+ { |
|
2866 |
+ int c; |
|
2867 |
+ do { |
|
2868 |
+ c = getc(fp); |
|
2869 |
+ if(c=='\n') goto out2; |
|
2870 |
+ } while(isspace(c)); |
|
2871 |
+ ungetc(c,fp); |
|
2872 |
+ fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value)); |
|
2873 |
+ ++j; |
|
2874 |
+ } |
|
2875 |
+out2: |
|
2876 |
+ x_space[j++].index = -1; |
|
2877 |
+ } |
|
2878 |
+ if (ferror(fp) != 0 || fclose(fp) != 0) return NULL; |
|
2879 |
+ |
|
2880 |
+ model->free_sv = 1; // XXX |
|
2881 |
+ return model; |
|
2882 |
+} |
|
2883 |
+ |
|
2884 |
+void svm_destroy_model(svm_model* model) |
|
2885 |
+{ |
|
2886 |
+ if(model->free_sv && model->l > 0) |
|
2887 |
+ free((void *)(model->SV[0])); |
|
2888 |
+ for(int i=0;i<model->nr_class-1;i++) |
|
2889 |
+ free(model->sv_coef[i]); |
|
2890 |
+ free(model->SV); |
|
2891 |
+ free(model->sv_coef); |
|
2892 |
+ free(model->rho); |
|
2893 |
+ free(model->label); |
|
2894 |
+ free(model->probA); |
|
2895 |
+ free(model->probB); |
|
2896 |
+ free(model->nSV); |
|
2897 |
+ free(model); |
|
2898 |
+} |
|
2899 |
+ |
|
2900 |
+void svm_destroy_param(svm_parameter* param) |
|
2901 |
+{ |
|
2902 |
+ free(param->weight_label); |
|
2903 |
+ free(param->weight); |
|
2904 |
+} |
|
2905 |
+ |
|
2906 |
+const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param) |
|
2907 |
+{ |
|
2908 |
+ // svm_type |
|
2909 |
+ |
|
2910 |
+ int svm_type = param->svm_type; |
|
2911 |
+ if(svm_type != C_SVC && |
|
2912 |
+ svm_type != NU_SVC && |
|
2913 |
+ svm_type != ONE_CLASS && |
|
2914 |
+ svm_type != EPSILON_SVR && |
|
2915 |
+ svm_type != NU_SVR) |
|
2916 |
+ return "unknown svm type"; |
|
2917 |
+ |
|
2918 |
+ // kernel_type, degree |
|
2919 |
+ |
|
2920 |
+ int kernel_type = param->kernel_type; |
|
2921 |
+ if(kernel_type != LINEAR && |
|
2922 |
+ kernel_type != POLY && |
|
2923 |
+ kernel_type != RBF && |
|
2924 |
+ kernel_type != SIGMOID && |
|
2925 |
+ kernel_type != PRECOMPUTED) |
|
2926 |
+ return "unknown kernel type"; |
|
2927 |
+ |
|
2928 |
+ if(param->degree < 0) |
|
2929 |
+ return "degree of polynomial kernel < 0"; |
|
2930 |
+ |
|
2931 |
+ // cache_size,eps,C,nu,p,shrinking |
|
2932 |
+ |
|
2933 |
+ if(param->cache_size <= 0) |
|
2934 |
+ return "cache_size <= 0"; |
|
2935 |
+ |
|
2936 |
+ if(param->eps <= 0) |
|
2937 |
+ return "eps <= 0"; |
|
2938 |
+ |
|
2939 |
+ if(svm_type == C_SVC || |
|
2940 |
+ svm_type == EPSILON_SVR || |
|
2941 |
+ svm_type == NU_SVR) |
|
2942 |
+ if(param->C <= 0) |
|
2943 |
+ return "C <= 0"; |
|
2944 |
+ |
|
2945 |
+ if(svm_type == NU_SVC || |
|
2946 |
+ svm_type == ONE_CLASS || |
|
2947 |
+ svm_type == NU_SVR) |
|
2948 |
+ if(param->nu <= 0 || param->nu > 1) |
|
2949 |
+ return "nu <= 0 or nu > 1"; |
|
2950 |
+ |
|
2951 |
+ if(svm_type == EPSILON_SVR) |
|
2952 |
+ if(param->p < 0) |
|
2953 |
+ return "p < 0"; |
|
2954 |
+ |
|
2955 |
+ if(param->shrinking != 0 && |
|
2956 |
+ param->shrinking != 1) |
|
2957 |
+ return "shrinking != 0 and shrinking != 1"; |
|
2958 |
+ |
|
2959 |
+ if(param->probability != 0 && |
|
2960 |
+ param->probability != 1) |
|
2961 |
+ return "probability != 0 and probability != 1"; |
|
2962 |
+ |
|
2963 |
+ if(param->probability == 1 && |
|
2964 |
+ svm_type == ONE_CLASS) |
|
2965 |
+ return "one-class SVM probability output not supported yet"; |
|
2966 |
+ |
|
2967 |
+ |
|
2968 |
+ // check whether nu-svc is feasible |
|
2969 |
+ |
|
2970 |
+ if(svm_type == NU_SVC) |
|
2971 |
+ { |
|
2972 |
+ int l = prob->l; |
|
2973 |
+ int max_nr_class = 16; |
|
2974 |
+ int nr_class = 0; |
|
2975 |
+ int *label = Malloc(int,max_nr_class); |
|
2976 |
+ int *count = Malloc(int,max_nr_class); |
|
2977 |
+ |
|
2978 |
+ int i; |
|
2979 |
+ for(i=0;i<l;i++) |
|
2980 |
+ { |
|
2981 |
+ int this_label = (int)prob->y[i]; |
|
2982 |
+ int j; |
|
2983 |
+ for(j=0;j<nr_class;j++) |
|
2984 |
+ if(this_label == label[j]) |
|
2985 |
+ { |
|
2986 |
+ ++count[j]; |
|
2987 |
+ break; |
|
2988 |
+ } |
|
2989 |
+ if(j == nr_class) |
|
2990 |
+ { |
|
2991 |
+ if(nr_class == max_nr_class) |
|
2992 |
+ { |
|
2993 |
+ max_nr_class *= 2; |
|
2994 |
+ label = (int *)realloc(label,max_nr_class*sizeof(int)); |
|
2995 |
+ count = (int *)realloc(count,max_nr_class*sizeof(int)); |
|
2996 |
+ } |
|
2997 |
+ label[nr_class] = this_label; |
|
2998 |
+ count[nr_class] = 1; |
|
2999 |
+ ++nr_class; |
|
3000 |
+ } |
|
3001 |
+ } |
|
3002 |
+ |
|
3003 |
+ for(i=0;i<nr_class;i++) |
|
3004 |
+ { |
|
3005 |
+ int n1 = count[i]; |
|
3006 |
+ for(int j=i+1;j<nr_class;j++) |
|
3007 |
+ { |
|
3008 |
+ int n2 = count[j]; |
|
3009 |
+ if(param->nu*(n1+n2)/2 > min(n1,n2)) |
|
3010 |
+ { |
|
3011 |
+ free(label); |
|
3012 |
+ free(count); |
|
3013 |
+ return "specified nu is infeasible"; |
|
3014 |
+ } |
|
3015 |
+ } |
|
3016 |
+ } |
|
3017 |
+ free(label); |
|
3018 |
+ free(count); |
|
3019 |
+ } |
|
3020 |
+ |
|
3021 |
+ return NULL; |
|
3022 |
+} |
|
3023 |
+ |
|
3024 |
+int svm_check_probability_model(const svm_model *model) |
|
3025 |
+{ |
|
3026 |
+ return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && |
|
3027 |
+ model->probA!=NULL && model->probB!=NULL) || |
|
3028 |
+ ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && |
|
3029 |
+ model->probA!=NULL); |
|
3030 |
+} |
... | ... |
@@ -0,0 +1,93 @@ |
1 |
+#ifndef _LIBSVM_H |
|
2 |
+#define _LIBSVM_H |
|
3 |
+ |
|
4 |
+#define LIBSVM_VERSION 288 |
|
5 |
+ |
|
6 |
+#ifdef __cplusplus |
|
7 |
+extern "C" { |
|
8 |
+#endif |
|
9 |
+ |
|
10 |
+struct svm_node |
|
11 |
+{ |
|
12 |
+ int index; |
|
13 |
+ double value; |
|
14 |
+}; |
|
15 |
+ |
|
16 |
+struct svm_problem |
|
17 |
+{ |
|
18 |
+ int l; |
|
19 |
+ double *y; |
|
20 |
+ struct svm_node **x; |
|
21 |
+}; |
|
22 |
+ |
|
23 |
+enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */ |
|
24 |
+enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */ |
|
25 |
+ |
|
26 |
+struct svm_parameter |
|
27 |
+{ |
|
28 |
+ int svm_type; |
|
29 |
+ int kernel_type; |
|
30 |
+ int degree; /* for poly */ |
|
31 |
+ double gamma; /* for poly/rbf/sigmoid */ |
|
32 |
+ double coef0; /* for poly/sigmoid */ |
|
33 |
+ |
|
34 |
+ /* these are for training only */ |
|
35 |
+ double cache_size; /* in MB */ |
|
36 |
+ double eps; /* stopping criteria */ |
|
37 |
+ double C; /* for C_SVC, EPSILON_SVR and NU_SVR */ |
|
38 |
+ int nr_weight; /* for C_SVC */ |
|
39 |
+ int *weight_label; /* for C_SVC */ |
|
40 |
+ double* weight; /* for C_SVC */ |
|
41 |
+ double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */ |
|
42 |
+ double p; /* for EPSILON_SVR */ |
|
43 |
+ int shrinking; /* use the shrinking heuristics */ |
|
44 |
+ int probability; /* do probability estimates */ |
|
45 |
+}; |
|
46 |
+ |
|
47 |
+struct svm_model |
|
48 |
+{ |
|
49 |
+ struct svm_parameter param; // parameter |
|
50 |
+ int nr_class; // number of classes, = 2 in regression/one class svm |
|
51 |
+ int l; // total #SV |
|
52 |
+ struct svm_node **SV; // SVs (SV[l]) |
|
53 |
+ double **sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l]) |
|
54 |
+ double *rho; // constants in decision functions (rho[k*(k-1)/2]) |
|
55 |
+ double *probA; // pariwise probability information |
|
56 |
+ double *probB; |
|
57 |
+ |
|
58 |
+ // for classification only |
|
59 |
+ |
|
60 |
+ int *label; // label of each class (label[k]) |
|
61 |
+ int *nSV; // number of SVs for each class (nSV[k]) |
|
62 |
+ // nSV[0] + nSV[1] + ... + nSV[k-1] = l |
|
63 |
+ // XXX |
|
64 |
+ int free_sv; // 1 if svm_model is created by svm_load_model |
|
65 |
+ // 0 if svm_model is created by svm_train |
|
66 |
+}; |
|
67 |
+ |
|
68 |
+struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param); |
|
69 |
+void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target); |
|
70 |
+ |
|
71 |
+int svm_save_model(const char *model_file_name, const struct svm_model *model); |
|
72 |
+struct svm_model *svm_load_model(const char *model_file_name); |
|
73 |
+ |
|
74 |
+int svm_get_svm_type(const struct svm_model *model); |
|
75 |
+int svm_get_nr_class(const struct svm_model *model); |
|
76 |
+void svm_get_labels(const struct svm_model *model, int *label); |
|
77 |
+double svm_get_svr_probability(const struct svm_model *model); |
|
78 |
+ |
|
79 |
+void svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values); |
|
80 |
+double svm_predict(const struct svm_model *model, const struct svm_node *x); |
|
81 |
+double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates); |
|
82 |
+ |
|
83 |
+void svm_destroy_model(struct svm_model *model); |
|
84 |
+void svm_destroy_param(struct svm_parameter *param); |
|
85 |
+ |
|
86 |
+const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param); |
|
87 |
+int svm_check_probability_model(const struct svm_model *model); |
|
88 |
+ |
|
89 |
+#ifdef __cplusplus |
|
90 |
+} |
|
91 |
+#endif |
|
92 |
+ |
|
93 |
+#endif /* _LIBSVM_H */ |
... | ... |
@@ -0,0 +1,349 @@ |
1 |
+#include <stdlib.h> |
|
2 |
+#include <string.h> |
|
3 |
+#include "svm.h" |
|
4 |
+ |
|
5 |
+#include "mex.h" |
|
6 |
+ |
|
7 |
+#if MX_API_VER < 0x07030000 |
|
8 |
+typedef int mwIndex; |
|
9 |
+#endif |
|
10 |
+ |
|
11 |
+#define NUM_OF_RETURN_FIELD 10 |
|
12 |
+ |
|
13 |
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) |
|
14 |
+ |
|
15 |
+static const char *field_names[] = { |
|
16 |
+ "Parameters", |
|
17 |
+ "nr_class", |
|
18 |
+ "totalSV", |
|
19 |
+ "rho", |
|
20 |
+ "Label", |
|
21 |
+ "ProbA", |
|
22 |
+ "ProbB", |
|
23 |
+ "nSV", |
|
24 |
+ "sv_coef", |
|
25 |
+ "SVs" |
|
26 |
+}; |
|
27 |
+ |
|
28 |
+const char *model_to_matlab_structure(mxArray *plhs[], int num_of_feature, struct svm_model *model) |
|
29 |
+{ |
|
30 |
+ int i, j, n; |
|
31 |
+ double *ptr; |
|
32 |
+ mxArray *return_model, **rhs; |
|
33 |
+ int out_id = 0; |
|
34 |
+ |
|
35 |
+ rhs = (mxArray **)mxMalloc(sizeof(mxArray *)*NUM_OF_RETURN_FIELD); |
|
36 |
+ |
|
37 |
+ // Parameters |
|
38 |
+ rhs[out_id] = mxCreateDoubleMatrix(5, 1, mxREAL); |
|
39 |
+ ptr = mxGetPr(rhs[out_id]); |
|
40 |
+ ptr[0] = model->param.svm_type; |
|
41 |
+ ptr[1] = model->param.kernel_type; |
|
42 |
+ ptr[2] = model->param.degree; |
|
43 |
+ ptr[3] = model->param.gamma; |
|
44 |
+ ptr[4] = model->param.coef0; |
|
45 |
+ out_id++; |
|
46 |
+ |
|
47 |
+ // nr_class |
|
48 |
+ rhs[out_id] = mxCreateDoubleMatrix(1, 1, mxREAL); |
|
49 |
+ ptr = mxGetPr(rhs[out_id]); |
|
50 |
+ ptr[0] = model->nr_class; |
|
51 |
+ out_id++; |
|
52 |
+ |
|
53 |
+ // total SV |
|
54 |
+ rhs[out_id] = mxCreateDoubleMatrix(1, 1, mxREAL); |
|
55 |
+ ptr = mxGetPr(rhs[out_id]); |
|
56 |
+ ptr[0] = model->l; |
|
57 |
+ out_id++; |
|
58 |
+ |
|
59 |
+ // rho |
|
60 |
+ n = model->nr_class*(model->nr_class-1)/2; |
|
61 |
+ rhs[out_id] = mxCreateDoubleMatrix(n, 1, mxREAL); |
|
62 |
+ ptr = mxGetPr(rhs[out_id]); |
|
63 |
+ for(i = 0; i < n; i++) |
|
64 |
+ ptr[i] = model->rho[i]; |
|
65 |
+ out_id++; |
|
66 |
+ |
|
67 |
+ // Label |
|
68 |
+ if(model->label) |
|
69 |
+ { |
|
70 |
+ rhs[out_id] = mxCreateDoubleMatrix(model->nr_class, 1, mxREAL); |
|
71 |
+ ptr = mxGetPr(rhs[out_id]); |
|
72 |
+ for(i = 0; i < model->nr_class; i++) |
|
73 |
+ ptr[i] = model->label[i]; |
|
74 |
+ } |
|
75 |
+ else |
|
76 |
+ rhs[out_id] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
77 |
+ out_id++; |
|
78 |
+ |
|
79 |
+ // probA |
|
80 |
+ if(model->probA != NULL) |
|
81 |
+ { |
|
82 |
+ rhs[out_id] = mxCreateDoubleMatrix(n, 1, mxREAL); |
|
83 |
+ ptr = mxGetPr(rhs[out_id]); |
|
84 |
+ for(i = 0; i < n; i++) |
|
85 |
+ ptr[i] = model->probA[i]; |
|
86 |
+ } |
|
87 |
+ else |
|
88 |
+ rhs[out_id] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
89 |
+ out_id ++; |
|
90 |
+ |
|
91 |
+ // probB |
|
92 |
+ if(model->probB != NULL) |
|
93 |
+ { |
|
94 |
+ rhs[out_id] = mxCreateDoubleMatrix(n, 1, mxREAL); |
|
95 |
+ ptr = mxGetPr(rhs[out_id]); |
|
96 |
+ for(i = 0; i < n; i++) |
|
97 |
+ ptr[i] = model->probB[i]; |
|
98 |
+ } |
|
99 |
+ else |
|
100 |
+ rhs[out_id] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
101 |
+ out_id++; |
|
102 |
+ |
|
103 |
+ // nSV |
|
104 |
+ if(model->nSV) |
|
105 |
+ { |
|
106 |
+ rhs[out_id] = mxCreateDoubleMatrix(model->nr_class, 1, mxREAL); |
|
107 |
+ ptr = mxGetPr(rhs[out_id]); |
|
108 |
+ for(i = 0; i < model->nr_class; i++) |
|
109 |
+ ptr[i] = model->nSV[i]; |
|
110 |
+ } |
|
111 |
+ else |
|
112 |
+ rhs[out_id] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
113 |
+ out_id++; |
|
114 |
+ |
|
115 |
+ // sv_coef |
|
116 |
+ rhs[out_id] = mxCreateDoubleMatrix(model->l, model->nr_class-1, mxREAL); |
|
117 |
+ ptr = mxGetPr(rhs[out_id]); |
|
118 |
+ for(i = 0; i < model->nr_class-1; i++) |
|
119 |
+ for(j = 0; j < model->l; j++) |
|
120 |
+ ptr[(i*(model->l))+j] = model->sv_coef[i][j]; |
|
121 |
+ out_id++; |
|
122 |
+ |
|
123 |
+ // SVs |
|
124 |
+ { |
|
125 |
+ int ir_index, nonzero_element; |
|
126 |
+ mwIndex *ir, *jc; |
|
127 |
+ mxArray *pprhs[1], *pplhs[1]; |
|
128 |
+ |
|
129 |
+ if(model->param.kernel_type == PRECOMPUTED) |
|
130 |
+ { |
|
131 |
+ nonzero_element = model->l; |
|
132 |
+ num_of_feature = 1; |
|
133 |
+ } |
|
134 |
+ else |
|
135 |
+ { |
|
136 |
+ nonzero_element = 0; |
|
137 |
+ for(i = 0; i < model->l; i++) { |
|
138 |
+ j = 0; |
|
139 |
+ while(model->SV[i][j].index != -1) |
|
140 |
+ { |
|
141 |
+ nonzero_element++; |
|
142 |
+ j++; |
|
143 |
+ } |
|
144 |
+ } |
|
145 |
+ } |
|
146 |
+ |
|
147 |
+ // SV in column, easier accessing |
|
148 |
+ rhs[out_id] = mxCreateSparse(num_of_feature, model->l, nonzero_element, mxREAL); |
|
149 |
+ ir = mxGetIr(rhs[out_id]); |
|
150 |
+ jc = mxGetJc(rhs[out_id]); |
|
151 |
+ ptr = mxGetPr(rhs[out_id]); |
|
152 |
+ ir_index = jc[0] = 0; |
|
153 |
+ for(i = 0;i < model->l; i++) |
|
154 |
+ { |
|
155 |
+ if(model->param.kernel_type == PRECOMPUTED) |
|
156 |
+ { |
|
157 |
+ // make a (1 x model->l) matrix |
|
158 |
+ ir[ir_index] = 0; |
|
159 |
+ ptr[ir_index] = model->SV[i][0].value; |
|
160 |
+ ir_index++; |
|
161 |
+ jc[i+1] = jc[i] + 1; |
|
162 |
+ } |
|
163 |
+ else |
|
164 |
+ { |
|
165 |
+ int x_index = 0; |
|
166 |
+ while (model->SV[i][x_index].index != -1) |
|
167 |
+ { |
|
168 |
+ ir[ir_index] = model->SV[i][x_index].index - 1; |
|
169 |
+ ptr[ir_index] = model->SV[i][x_index].value; |
|
170 |
+ ir_index++, x_index++; |
|
171 |
+ } |
|
172 |
+ jc[i+1] = jc[i] + x_index; |
|
173 |
+ } |
|
174 |
+ } |
|
175 |
+ // transpose back to SV in row |
|
176 |
+ pprhs[0] = rhs[out_id]; |
|
177 |
+ if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose")) |
|
178 |
+ return "cannot transpose SV matrix"; |
|
179 |
+ rhs[out_id] = pplhs[0]; |
|
180 |
+ out_id++; |
|
181 |
+ } |
|
182 |
+ |
|
183 |
+ /* Create a struct matrix contains NUM_OF_RETURN_FIELD fields */ |
|
184 |
+ return_model = mxCreateStructMatrix(1, 1, NUM_OF_RETURN_FIELD, field_names); |
|
185 |
+ |
|
186 |
+ /* Fill struct matrix with input arguments */ |
|
187 |
+ for(i = 0; i < NUM_OF_RETURN_FIELD; i++) |
|
188 |
+ mxSetField(return_model,0,field_names[i],mxDuplicateArray(rhs[i])); |
|
189 |
+ /* return */ |
|
190 |
+ plhs[0] = return_model; |
|
191 |
+ mxFree(rhs); |
|
192 |
+ |
|
193 |
+ return NULL; |
|
194 |
+} |
|
195 |
+ |
|
196 |
+struct svm_model *matlab_matrix_to_model(const mxArray *matlab_struct, const char **msg) |
|
197 |
+{ |
|
198 |
+ int i, j, n, num_of_fields; |
|
199 |
+ double *ptr; |
|
200 |
+ int id = 0; |
|
201 |
+ struct svm_node *x_space; |
|
202 |
+ struct svm_model *model; |
|
203 |
+ mxArray **rhs; |
|
204 |
+ |
|
205 |
+ num_of_fields = mxGetNumberOfFields(matlab_struct); |
|
206 |
+ if(num_of_fields != NUM_OF_RETURN_FIELD) |
|
207 |
+ { |
|
208 |
+ *msg = "number of return field is not correct"; |
|
209 |
+ return NULL; |
|
210 |
+ } |
|
211 |
+ rhs = (mxArray **) mxMalloc(sizeof(mxArray *)*num_of_fields); |
|
212 |
+ |
|
213 |
+ for(i=0;i<num_of_fields;i++) |
|
214 |
+ rhs[i] = mxGetFieldByNumber(matlab_struct, 0, i); |
|
215 |
+ |
|
216 |
+ model = Malloc(struct svm_model, 1); |
|
217 |
+ model->rho = NULL; |
|
218 |
+ model->probA = NULL; |
|
219 |
+ model->probB = NULL; |
|
220 |
+ model->label = NULL; |
|
221 |
+ model->nSV = NULL; |
|
222 |
+ model->free_sv = 1; // XXX |
|
223 |
+ |
|
224 |
+ ptr = mxGetPr(rhs[id]); |
|
225 |
+ model->param.svm_type = (int)ptr[0]; |
|
226 |
+ model->param.kernel_type = (int)ptr[1]; |
|
227 |
+ model->param.degree = (int)ptr[2]; |
|
228 |
+ model->param.gamma = ptr[3]; |
|
229 |
+ model->param.coef0 = ptr[4]; |
|
230 |
+ id++; |
|
231 |
+ |
|
232 |
+ ptr = mxGetPr(rhs[id]); |
|
233 |
+ model->nr_class = (int)ptr[0]; |
|
234 |
+ id++; |
|
235 |
+ |
|
236 |
+ ptr = mxGetPr(rhs[id]); |
|
237 |
+ model->l = (int)ptr[0]; |
|
238 |
+ id++; |
|
239 |
+ |
|
240 |
+ // rho |
|
241 |
+ n = model->nr_class * (model->nr_class-1)/2; |
|
242 |
+ model->rho = (double*) malloc(n*sizeof(double)); |
|
243 |
+ ptr = mxGetPr(rhs[id]); |
|
244 |
+ for(i=0;i<n;i++) |
|
245 |
+ model->rho[i] = ptr[i]; |
|
246 |
+ id++; |
|
247 |
+ |
|
248 |
+ // label |
|
249 |
+ if(mxIsEmpty(rhs[id]) == 0) |
|
250 |
+ { |
|
251 |
+ model->label = (int*) malloc(model->nr_class*sizeof(int)); |
|
252 |
+ ptr = mxGetPr(rhs[id]); |
|
253 |
+ for(i=0;i<model->nr_class;i++) |
|
254 |
+ model->label[i] = (int)ptr[i]; |
|
255 |
+ } |
|
256 |
+ id++; |
|
257 |
+ |
|
258 |
+ // probA |
|
259 |
+ if(mxIsEmpty(rhs[id]) == 0) |
|
260 |
+ { |
|
261 |
+ model->probA = (double*) malloc(n*sizeof(double)); |
|
262 |
+ ptr = mxGetPr(rhs[id]); |
|
263 |
+ for(i=0;i<n;i++) |
|
264 |
+ model->probA[i] = ptr[i]; |
|
265 |
+ } |
|
266 |
+ id++; |
|
267 |
+ |
|
268 |
+ // probB |
|
269 |
+ if(mxIsEmpty(rhs[id]) == 0) |
|
270 |
+ { |
|
271 |
+ model->probB = (double*) malloc(n*sizeof(double)); |
|
272 |
+ ptr = mxGetPr(rhs[id]); |
|
273 |
+ for(i=0;i<n;i++) |
|
274 |
+ model->probB[i] = ptr[i]; |
|
275 |
+ } |
|
276 |
+ id++; |
|
277 |
+ |
|
278 |
+ // nSV |
|
279 |
+ if(mxIsEmpty(rhs[id]) == 0) |
|
280 |
+ { |
|
281 |
+ model->nSV = (int*) malloc(model->nr_class*sizeof(int)); |
|
282 |
+ ptr = mxGetPr(rhs[id]); |
|
283 |
+ for(i=0;i<model->nr_class;i++) |
|
284 |
+ model->nSV[i] = (int)ptr[i]; |
|
285 |
+ } |
|
286 |
+ id++; |
|
287 |
+ |
|
288 |
+ // sv_coef |
|
289 |
+ ptr = mxGetPr(rhs[id]); |
|
290 |
+ model->sv_coef = (double**) malloc((model->nr_class-1)*sizeof(double)); |
|
291 |
+ for( i=0 ; i< model->nr_class -1 ; i++ ) |
|
292 |
+ model->sv_coef[i] = (double*) malloc((model->l)*sizeof(double)); |
|
293 |
+ for(i = 0; i < model->nr_class - 1; i++) |
|
294 |
+ for(j = 0; j < model->l; j++) |
|
295 |
+ model->sv_coef[i][j] = ptr[i*(model->l)+j]; |
|
296 |
+ id++; |
|
297 |
+ |
|
298 |
+ // SV |
|
299 |
+ { |
|
300 |
+ int sr, sc, elements; |
|
301 |
+ int num_samples; |
|
302 |
+ mwIndex *ir, *jc; |
|
303 |
+ mxArray *pprhs[1], *pplhs[1]; |
|
304 |
+ |
|
305 |
+ // transpose SV |
|
306 |
+ pprhs[0] = rhs[id]; |
|
307 |
+ if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose")) |
|
308 |
+ { |
|
309 |
+ svm_destroy_model(model); |
|
310 |
+ *msg = "cannot transpose SV matrix"; |
|
311 |
+ return NULL; |
|
312 |
+ } |
|
313 |
+ rhs[id] = pplhs[0]; |
|
314 |
+ |
|
315 |
+ sr = mxGetN(rhs[id]); |
|
316 |
+ sc = mxGetM(rhs[id]); |
|
317 |
+ |
|
318 |
+ ptr = mxGetPr(rhs[id]); |
|
319 |
+ ir = mxGetIr(rhs[id]); |
|
320 |
+ jc = mxGetJc(rhs[id]); |
|
321 |
+ |
|
322 |
+ num_samples = mxGetNzmax(rhs[id]); |
|
323 |
+ |
|
324 |
+ elements = num_samples + sr; |
|
325 |
+ |
|
326 |
+ model->SV = (struct svm_node **) malloc(sr * sizeof(struct svm_node *)); |
|
327 |
+ x_space = (struct svm_node *)malloc(elements * sizeof(struct svm_node)); |
|
328 |
+ |
|
329 |
+ // SV is in column |
|
330 |
+ for(i=0;i<sr;i++) |
|
331 |
+ { |
|
332 |
+ int low = jc[i], high = jc[i+1]; |
|
333 |
+ int x_index = 0; |
|
334 |
+ model->SV[i] = &x_space[low+i]; |
|
335 |
+ for(j=low;j<high;j++) |
|
336 |
+ { |
|
337 |
+ model->SV[i][x_index].index = ir[j] + 1; |
|
338 |
+ model->SV[i][x_index].value = ptr[j]; |
|
339 |
+ x_index++; |
|
340 |
+ } |
|
341 |
+ model->SV[i][x_index].index = -1; |
|
342 |
+ } |
|
343 |
+ |
|
344 |
+ id++; |
|
345 |
+ } |
|
346 |
+ mxFree(rhs); |
|
347 |
+ |
|
348 |
+ return model; |
|
349 |
+} |
... | ... |
@@ -0,0 +1,339 @@ |
1 |
+#include <stdio.h> |
|
2 |
+#include <stdlib.h> |
|
3 |
+#include <string.h> |
|
4 |
+#include "svm.h" |
|
5 |
+ |
|
6 |
+#include "mex.h" |
|
7 |
+#include "svm_model_matlab.h" |
|
8 |
+ |
|
9 |
+#if MX_API_VER < 0x07030000 |
|
10 |
+typedef int mwIndex; |
|
11 |
+#endif |
|
12 |
+ |
|
13 |
+#define CMD_LEN 2048 |
|
14 |
+ |
|
15 |
+void read_sparse_instance(const mxArray *prhs, int index, struct svm_node *x) |
|
16 |
+{ |
|
17 |
+ int i, j, low, high; |
|
18 |
+ mwIndex *ir, *jc; |
|
19 |
+ double *samples; |
|
20 |
+ |
|
21 |
+ ir = mxGetIr(prhs); |
|
22 |
+ jc = mxGetJc(prhs); |
|
23 |
+ samples = mxGetPr(prhs); |
|
24 |
+ |
|
25 |
+ // each column is one instance |
|
26 |
+ j = 0; |
|
27 |
+ low = jc[index], high = jc[index+1]; |
|
28 |
+ for(i=low;i<high;i++) |
|
29 |
+ { |
|
30 |
+ x[j].index = ir[i] + 1; |
|
31 |
+ x[j].value = samples[i]; |
|
32 |
+ j++; |
|
33 |
+ } |
|
34 |
+ x[j].index = -1; |
|
35 |
+} |
|
36 |
+ |
|
37 |
+static void fake_answer(mxArray *plhs[]) |
|
38 |
+{ |
|
39 |
+ plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
40 |
+ plhs[1] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
41 |
+ plhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
42 |
+} |
|
43 |
+ |
|
44 |
+void predict(mxArray *plhs[], const mxArray *prhs[], struct svm_model *model, const int predict_probability) |
|
45 |
+{ |
|
46 |
+ int label_vector_row_num, label_vector_col_num; |
|
47 |
+ int feature_number, testing_instance_number; |
|
48 |
+ int instance_index; |
|
49 |
+ double *ptr_instance, *ptr_label, *ptr_predict_label; |
|
50 |
+ double *ptr_prob_estimates, *ptr_dec_values, *ptr; |
|
51 |
+ struct svm_node *x; |
|
52 |
+ mxArray *pplhs[1]; // transposed instance sparse matrix |
|
53 |
+ |
|
54 |
+ int correct = 0; |
|
55 |
+ int total = 0; |
|
56 |
+ double error = 0; |
|
57 |
+ double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; |
|
58 |
+ |
|
59 |
+ int svm_type=svm_get_svm_type(model); |
|
60 |
+ int nr_class=svm_get_nr_class(model); |
|
61 |
+ double *prob_estimates=NULL; |
|
62 |
+ |
|
63 |
+ // prhs[1] = testing instance matrix |
|
64 |
+ feature_number = mxGetN(prhs[1]); |
|
65 |
+ testing_instance_number = mxGetM(prhs[1]); |
|
66 |
+ label_vector_row_num = mxGetM(prhs[0]); |
|
67 |
+ label_vector_col_num = mxGetN(prhs[0]); |
|
68 |
+ |
|
69 |
+ if(label_vector_row_num!=testing_instance_number) |
|
70 |
+ { |
|
71 |
+ mexPrintf("Length of label vector does not match # of instances.\n"); |
|
72 |
+ fake_answer(plhs); |
|
73 |
+ return; |
|
74 |
+ } |
|
75 |
+ if(label_vector_col_num!=1) |
|
76 |
+ { |
|
77 |
+ mexPrintf("label (1st argument) should be a vector (# of column is 1).\n"); |
|
78 |
+ fake_answer(plhs); |
|
79 |
+ return; |
|
80 |
+ } |
|
81 |
+ |
|
82 |
+ ptr_instance = mxGetPr(prhs[1]); |
|
83 |
+ ptr_label = mxGetPr(prhs[0]); |
|
84 |
+ |
|
85 |
+ // transpose instance matrix |
|
86 |
+ if(mxIsSparse(prhs[1])) |
|
87 |
+ { |
|
88 |
+ if(model->param.kernel_type == PRECOMPUTED) |
|
89 |
+ { |
|
90 |
+ // precomputed kernel requires dense matrix, so we make one |
|
91 |
+ mxArray *rhs[1], *lhs[1]; |
|
92 |
+ rhs[0] = mxDuplicateArray(prhs[1]); |
|
93 |
+ if(mexCallMATLAB(1, lhs, 1, rhs, "full")) |
|
94 |
+ { |
|
95 |
+ mexPrintf("Error: cannot full testing instance matrix\n"); |
|
96 |
+ fake_answer(plhs); |
|
97 |
+ return; |
|
98 |
+ } |
|
99 |
+ ptr_instance = mxGetPr(lhs[0]); |
|
100 |
+ mxDestroyArray(rhs[0]); |
|
101 |
+ } |
|
102 |
+ else |
|
103 |
+ { |
|
104 |
+ mxArray *pprhs[1]; |
|
105 |
+ pprhs[0] = mxDuplicateArray(prhs[1]); |
|
106 |
+ if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose")) |
|
107 |
+ { |
|
108 |
+ mexPrintf("Error: cannot transpose testing instance matrix\n"); |
|
109 |
+ fake_answer(plhs); |
|
110 |
+ return; |
|
111 |
+ } |
|
112 |
+ } |
|
113 |
+ } |
|
114 |
+ |
|
115 |
+ if(predict_probability) |
|
116 |
+ { |
|
117 |
+ if(svm_type==NU_SVR || svm_type==EPSILON_SVR) |
|
118 |
+ mexPrintf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); |
|
119 |
+ else |
|
120 |
+ prob_estimates = (double *) malloc(nr_class*sizeof(double)); |
|
121 |
+ } |
|
122 |
+ |
|
123 |
+ plhs[0] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL); |
|
124 |
+ if(predict_probability) |
|
125 |
+ { |
|
126 |
+ // prob estimates are in plhs[2] |
|
127 |
+ if(svm_type==C_SVC || svm_type==NU_SVC) |
|
128 |
+ plhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class, mxREAL); |
|
129 |
+ else |
|
130 |
+ plhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
131 |
+ } |
|
132 |
+ else |
|
133 |
+ { |
|
134 |
+ // decision values are in plhs[2] |
|
135 |
+ if(svm_type == ONE_CLASS || |
|
136 |
+ svm_type == EPSILON_SVR || |
|
137 |
+ svm_type == NU_SVR) |
|
138 |
+ plhs[2] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL); |
|
139 |
+ else |
|
140 |
+ plhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class*(nr_class-1)/2, mxREAL); |
|
141 |
+ } |
|
142 |
+ |
|
143 |
+ ptr_predict_label = mxGetPr(plhs[0]); |
|
144 |
+ ptr_prob_estimates = mxGetPr(plhs[2]); |
|
145 |
+ ptr_dec_values = mxGetPr(plhs[2]); |
|
146 |
+ x = (struct svm_node*)malloc((feature_number+1)*sizeof(struct svm_node) ); |
|
147 |
+ for(instance_index=0;instance_index<testing_instance_number;instance_index++) |
|
148 |
+ { |
|
149 |
+ int i; |
|
150 |
+ double target,v; |
|
151 |
+ |
|
152 |
+ target = ptr_label[instance_index]; |
|
153 |
+ |
|
154 |
+ if(mxIsSparse(prhs[1]) && model->param.kernel_type != PRECOMPUTED) // prhs[1]^T is still sparse |
|
155 |
+ read_sparse_instance(pplhs[0], instance_index, x); |
|
156 |
+ else |
|
157 |
+ { |
|
158 |
+ for(i=0;i<feature_number;i++) |
|
159 |
+ { |
|
160 |
+ x[i].index = i+1; |
|
161 |
+ x[i].value = ptr_instance[testing_instance_number*i+instance_index]; |
|
162 |
+ } |
|
163 |
+ x[feature_number].index = -1; |
|
164 |
+ } |
|
165 |
+ |
|
166 |
+ if(predict_probability) |
|
167 |
+ { |
|
168 |
+ if(svm_type==C_SVC || svm_type==NU_SVC) |
|
169 |
+ { |
|
170 |
+ v = svm_predict_probability(model, x, prob_estimates); |
|
171 |
+ ptr_predict_label[instance_index] = v; |
|
172 |
+ for(i=0;i<nr_class;i++) |
|
173 |
+ ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i]; |
|
174 |
+ } else { |
|
175 |
+ v = svm_predict(model,x); |
|
176 |
+ ptr_predict_label[instance_index] = v; |
|
177 |
+ } |
|
178 |
+ } |
|
179 |
+ else |
|
180 |
+ { |
|
181 |
+ v = svm_predict(model,x); |
|
182 |
+ ptr_predict_label[instance_index] = v; |
|
183 |
+ |
|
184 |
+ if(svm_type == ONE_CLASS || |
|
185 |
+ svm_type == EPSILON_SVR || |
|
186 |
+ svm_type == NU_SVR) |
|
187 |
+ { |
|
188 |
+ double res; |
|
189 |
+ svm_predict_values(model, x, &res); |
|
190 |
+ ptr_dec_values[instance_index] = res; |
|
191 |
+ } |
|
192 |
+ else |
|
193 |
+ { |
|
194 |
+ double *dec_values = (double *) malloc(sizeof(double) * nr_class*(nr_class-1)/2); |
|
195 |
+ svm_predict_values(model, x, dec_values); |
|
196 |
+ for(i=0;i<(nr_class*(nr_class-1))/2;i++) |
|
197 |
+ ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i]; |
|
198 |
+ free(dec_values); |
|
199 |
+ } |
|
200 |
+ } |
|
201 |
+ |
|
202 |
+ if(v == target) |
|
203 |
+ ++correct; |
|
204 |
+ error += (v-target)*(v-target); |
|
205 |
+ sumv += v; |
|
206 |
+ sumy += target; |
|
207 |
+ sumvv += v*v; |
|
208 |
+ sumyy += target*target; |
|
209 |
+ sumvy += v*target; |
|
210 |
+ ++total; |
|
211 |
+ } |
|
212 |
+ if(svm_type==NU_SVR || svm_type==EPSILON_SVR) |
|
213 |
+ { |
|
214 |
+ mexPrintf("Mean squared error = %g (regression)\n",error/total); |
|
215 |
+ mexPrintf("Squared correlation coefficient = %g (regression)\n", |
|
216 |
+ ((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/ |
|
217 |
+ ((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy)) |
|
218 |
+ ); |
|
219 |
+ } |
|
220 |
+ else |
|
221 |
+ mexPrintf("Accuracy = %g%% (%d/%d) (classification)\n", |
|
222 |
+ (double)correct/total*100,correct,total); |
|
223 |
+ |
|
224 |
+ // return accuracy, mean squared error, squared correlation coefficient |
|
225 |
+ plhs[1] = mxCreateDoubleMatrix(3, 1, mxREAL); |
|
226 |
+ ptr = mxGetPr(plhs[1]); |
|
227 |
+ ptr[0] = (double)correct/total*100; |
|
228 |
+ ptr[1] = error/total; |
|
229 |
+ ptr[2] = ((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/ |
|
230 |
+ ((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy)); |
|
231 |
+ |
|
232 |
+ free(x); |
|
233 |
+ if(prob_estimates != NULL) |
|
234 |
+ free(prob_estimates); |
|
235 |
+} |
|
236 |
+ |
|
237 |
+void exit_with_help() |
|
238 |
+{ |
|
239 |
+ mexPrintf( |
|
240 |
+ "Usage: [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model, 'libsvm_options')\n" |
|
241 |
+ "libsvm_options:\n" |
|
242 |
+ "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n" |
|
243 |
+ ); |
|
244 |
+} |
|
245 |
+ |
|
246 |
+void mexFunction( int nlhs, mxArray *plhs[], |
|
247 |
+ int nrhs, const mxArray *prhs[] ) |
|
248 |
+{ |
|
249 |
+ int prob_estimate_flag = 0; |
|
250 |
+ struct svm_model *model; |
|
251 |
+ |
|
252 |
+ if(nrhs > 4 || nrhs < 3) |
|
253 |
+ { |
|
254 |
+ exit_with_help(); |
|
255 |
+ fake_answer(plhs); |
|
256 |
+ return; |
|
257 |
+ } |
|
258 |
+ |
|
259 |
+ if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) { |
|
260 |
+ mexPrintf("Error: label vector and instance matrix must be double\n"); |
|
261 |
+ fake_answer(plhs); |
|
262 |
+ return; |
|
263 |
+ } |
|
264 |
+ |
|
265 |
+ if(mxIsStruct(prhs[2])) |
|
266 |
+ { |
|
267 |
+ const char *error_msg; |
|
268 |
+ |
|
269 |
+ // parse options |
|
270 |
+ if(nrhs==4) |
|
271 |
+ { |
|
272 |
+ int i, argc = 1; |
|
273 |
+ char cmd[CMD_LEN], *argv[CMD_LEN/2]; |
|
274 |
+ |
|
275 |
+ // put options in argv[] |
|
276 |
+ mxGetString(prhs[3], cmd, mxGetN(prhs[3]) + 1); |
|
277 |
+ if((argv[argc] = strtok(cmd, " ")) != NULL) |
|
278 |
+ while((argv[++argc] = strtok(NULL, " ")) != NULL) |
|
279 |
+ ; |
|
280 |
+ |
|
281 |
+ for(i=1;i<argc;i++) |
|
282 |
+ { |
|
283 |
+ if(argv[i][0] != '-') break; |
|
284 |
+ if(++i>=argc) |
|
285 |
+ { |
|
286 |
+ exit_with_help(); |
|
287 |
+ fake_answer(plhs); |
|
288 |
+ return; |
|
289 |
+ } |
|
290 |
+ switch(argv[i-1][1]) |
|
291 |
+ { |
|
292 |
+ case 'b': |
|
293 |
+ prob_estimate_flag = atoi(argv[i]); |
|
294 |
+ break; |
|
295 |
+ default: |
|
296 |
+ mexPrintf("Unknown option: -%c\n", argv[i-1][1]); |
|
297 |
+ exit_with_help(); |
|
298 |
+ fake_answer(plhs); |
|
299 |
+ return; |
|
300 |
+ } |
|
301 |
+ } |
|
302 |
+ } |
|
303 |
+ |
|
304 |
+ model = matlab_matrix_to_model(prhs[2], &error_msg); |
|
305 |
+ if (model == NULL) |
|
306 |
+ { |
|
307 |
+ mexPrintf("Error: can't read model: %s\n", error_msg); |
|
308 |
+ fake_answer(plhs); |
|
309 |
+ return; |
|
310 |
+ } |
|
311 |
+ |
|
312 |
+ if(prob_estimate_flag) |
|
313 |
+ { |
|
314 |
+ if(svm_check_probability_model(model)==0) |
|
315 |
+ { |
|
316 |
+ mexPrintf("Model does not support probabiliy estimates\n"); |
|
317 |
+ fake_answer(plhs); |
|
318 |
+ svm_destroy_model(model); |
|
319 |
+ return; |
|
320 |
+ } |
|
321 |
+ } |
|
322 |
+ else |
|
323 |
+ { |
|
324 |
+ if(svm_check_probability_model(model)!=0) |
|
325 |
+ printf("Model supports probability estimates, but disabled in predicton.\n"); |
|
326 |
+ } |
|
327 |
+ |
|
328 |
+ predict(plhs, prhs, model, prob_estimate_flag); |
|
329 |
+ // destroy model |
|
330 |
+ svm_destroy_model(model); |
|
331 |
+ } |
|
332 |
+ else |
|
333 |
+ { |
|
334 |
+ mexPrintf("model file should be a struct array\n"); |
|
335 |
+ fake_answer(plhs); |
|
336 |
+ } |
|
337 |
+ |
|
338 |
+ return; |
|
339 |
+} |
... | ... |
@@ -0,0 +1,458 @@ |
1 |
+#include <stdio.h> |
|
2 |
+#include <stdlib.h> |
|
3 |
+#include <string.h> |
|
4 |
+#include <ctype.h> |
|
5 |
+#include "svm.h" |
|
6 |
+ |
|
7 |
+#include "mex.h" |
|
8 |
+#include "svm_model_matlab.h" |
|
9 |
+ |
|
10 |
+#if MX_API_VER < 0x07030000 |
|
11 |
+typedef int mwIndex; |
|
12 |
+#endif |
|
13 |
+ |
|
14 |
+#define CMD_LEN 2048 |
|
15 |
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) |
|
16 |
+ |
|
17 |
+void exit_with_help() |
|
18 |
+{ |
|
19 |
+ mexPrintf( |
|
20 |
+ "Usage: model = svmtrain(training_label_vector, training_instance_matrix, 'libsvm_options');\n" |
|
21 |
+ "libsvm_options:\n" |
|
22 |
+ "-s svm_type : set type of SVM (default 0)\n" |
|
23 |
+ " 0 -- C-SVC\n" |
|
24 |
+ " 1 -- nu-SVC\n" |
|
25 |
+ " 2 -- one-class SVM\n" |
|
26 |
+ " 3 -- epsilon-SVR\n" |
|
27 |
+ " 4 -- nu-SVR\n" |
|
28 |
+ "-t kernel_type : set type of kernel function (default 2)\n" |
|
29 |
+ " 0 -- linear: u'*v\n" |
|
30 |
+ " 1 -- polynomial: (gamma*u'*v + coef0)^degree\n" |
|
31 |
+ " 2 -- radial basis function: exp(-gamma*|u-v|^2)\n" |
|
32 |
+ " 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n" |
|
33 |
+ " 4 -- precomputed kernel (kernel values in training_instance_matrix)\n" |
|
34 |
+ "-d degree : set degree in kernel function (default 3)\n" |
|
35 |
+ "-g gamma : set gamma in kernel function (default 1/k)\n" |
|
36 |
+ "-r coef0 : set coef0 in kernel function (default 0)\n" |
|
37 |
+ "-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n" |
|
38 |
+ "-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n" |
|
39 |
+ "-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n" |
|
40 |
+ "-m cachesize : set cache memory size in MB (default 100)\n" |
|
41 |
+ "-e epsilon : set tolerance of termination criterion (default 0.001)\n" |
|
42 |
+ "-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)\n" |
|
43 |
+ "-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n" |
|
44 |
+ "-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)\n" |
|
45 |
+ "-v n: n-fold cross validation mode\n" |
|
46 |
+ ); |
|
47 |
+} |
|
48 |
+ |
|
49 |
+// svm arguments |
|
50 |
+struct svm_parameter param; // set by parse_command_line |
|
51 |
+struct svm_problem prob; // set by read_problem |
|
52 |
+struct svm_model *model; |
|
53 |
+struct svm_node *x_space; |
|
54 |
+int cross_validation; |
|
55 |
+int nr_fold; |
|
56 |
+ |
|
57 |
+double do_cross_validation() |
|
58 |
+{ |
|
59 |
+ int i; |
|
60 |
+ int total_correct = 0; |
|
61 |
+ double total_error = 0; |
|
62 |
+ double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; |
|
63 |
+ double *target = Malloc(double,prob.l); |
|
64 |
+ double retval = 0.0; |
|
65 |
+ |
|
66 |
+ svm_cross_validation(&prob,¶m,nr_fold,target); |
|
67 |
+ if(param.svm_type == EPSILON_SVR || |
|
68 |
+ param.svm_type == NU_SVR) |
|
69 |
+ { |
|
70 |
+ for(i=0;i<prob.l;i++) |
|
71 |
+ { |
|
72 |
+ double y = prob.y[i]; |
|
73 |
+ double v = target[i]; |
|
74 |
+ total_error += (v-y)*(v-y); |
|
75 |
+ sumv += v; |
|
76 |
+ sumy += y; |
|
77 |
+ sumvv += v*v; |
|
78 |
+ sumyy += y*y; |
|
79 |
+ sumvy += v*y; |
|
80 |
+ } |
|
81 |
+ mexPrintf("Cross Validation Mean squared error = %g\n",total_error/prob.l); |
|
82 |
+ mexPrintf("Cross Validation Squared correlation coefficient = %g\n", |
|
83 |
+ ((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/ |
|
84 |
+ ((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy)) |
|
85 |
+ ); |
|
86 |
+ retval = total_error/prob.l; |
|
87 |
+ } |
|
88 |
+ else |
|
89 |
+ { |
|
90 |
+ for(i=0;i<prob.l;i++) |
|
91 |
+ if(target[i] == prob.y[i]) |
|
92 |
+ ++total_correct; |
|
93 |
+ mexPrintf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l); |
|
94 |
+ retval = 100.0*total_correct/prob.l; |
|
95 |
+ } |
|
96 |
+ free(target); |
|
97 |
+ return retval; |
|
98 |
+} |
|
99 |
+ |
|
100 |
+// nrhs should be 3 |
|
101 |
+int parse_command_line(int nrhs, const mxArray *prhs[], char *model_file_name) |
|
102 |
+{ |
|
103 |
+ int i, argc = 1; |
|
104 |
+ char cmd[CMD_LEN]; |
|
105 |
+ char *argv[CMD_LEN/2]; |
|
106 |
+ |
|
107 |
+ // default values |
|
108 |
+ param.svm_type = C_SVC; |
|
109 |
+ param.kernel_type = RBF; |
|
110 |
+ param.degree = 3; |
|
111 |
+ param.gamma = 0; // 1/k |
|
112 |
+ param.coef0 = 0; |
|
113 |
+ param.nu = 0.5; |
|
114 |
+ param.cache_size = 100; |
|
115 |
+ param.C = 1; |
|
116 |
+ param.eps = 1e-3; |
|
117 |
+ param.p = 0.1; |
|
118 |
+ param.shrinking = 1; |
|
119 |
+ param.probability = 0; |
|
120 |
+ param.nr_weight = 0; |
|
121 |
+ param.weight_label = NULL; |
|
122 |
+ param.weight = NULL; |
|
123 |
+ cross_validation = 0; |
|
124 |
+ |
|
125 |
+ if(nrhs <= 1) |
|
126 |
+ return 1; |
|
127 |
+ |
|
128 |
+ if(nrhs > 2) |
|
129 |
+ { |
|
130 |
+ // put options in argv[] |
|
131 |
+ mxGetString(prhs[2], cmd, mxGetN(prhs[2]) + 1); |
|
132 |
+ if((argv[argc] = strtok(cmd, " ")) != NULL) |
|
133 |
+ while((argv[++argc] = strtok(NULL, " ")) != NULL) |
|
134 |
+ ; |
|
135 |
+ } |
|
136 |
+ |
|
137 |
+ // parse options |
|
138 |
+ for(i=1;i<argc;i++) |
|
139 |
+ { |
|
140 |
+ if(argv[i][0] != '-') break; |
|
141 |
+ if(++i>=argc) |
|
142 |
+ return 1; |
|
143 |
+ switch(argv[i-1][1]) |
|
144 |
+ { |
|
145 |
+ case 's': |
|
146 |
+ param.svm_type = atoi(argv[i]); |
|
147 |
+ break; |
|
148 |
+ case 't': |
|
149 |
+ param.kernel_type = atoi(argv[i]); |
|
150 |
+ break; |
|
151 |
+ case 'd': |
|
152 |
+ param.degree = atoi(argv[i]); |
|
153 |
+ break; |
|
154 |
+ case 'g': |
|
155 |
+ param.gamma = atof(argv[i]); |
|
156 |
+ break; |
|
157 |
+ case 'r': |
|
158 |
+ param.coef0 = atof(argv[i]); |
|
159 |
+ break; |
|
160 |
+ case 'n': |
|
161 |
+ param.nu = atof(argv[i]); |
|
162 |
+ break; |
|
163 |
+ case 'm': |
|
164 |
+ param.cache_size = atof(argv[i]); |
|
165 |
+ break; |
|
166 |
+ case 'c': |
|
167 |
+ param.C = atof(argv[i]); |
|
168 |
+ break; |
|
169 |
+ case 'e': |
|
170 |
+ param.eps = atof(argv[i]); |
|
171 |
+ break; |
|
172 |
+ case 'p': |
|
173 |
+ param.p = atof(argv[i]); |
|
174 |
+ break; |
|
175 |
+ case 'h': |
|
176 |
+ param.shrinking = atoi(argv[i]); |
|
177 |
+ break; |
|
178 |
+ case 'b': |
|
179 |
+ param.probability = atoi(argv[i]); |
|
180 |
+ break; |
|
181 |
+ case 'v': |
|
182 |
+ cross_validation = 1; |
|
183 |
+ nr_fold = atoi(argv[i]); |
|
184 |
+ if(nr_fold < 2) |
|
185 |
+ { |
|
186 |
+ mexPrintf("n-fold cross validation: n must >= 2\n"); |
|
187 |
+ return 1; |
|
188 |
+ } |
|
189 |
+ break; |
|
190 |
+ case 'w': |
|
191 |
+ ++param.nr_weight; |
|
192 |
+ param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight); |
|
193 |
+ param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight); |
|
194 |
+ param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]); |
|
195 |
+ param.weight[param.nr_weight-1] = atof(argv[i]); |
|
196 |
+ break; |
|
197 |
+ default: |
|
198 |
+ mexPrintf("Unknown option -%c\n", argv[i-1][1]); |
|
199 |
+ return 1; |
|
200 |
+ } |
|
201 |
+ } |
|
202 |
+ return 0; |
|
203 |
+} |
|
204 |
+ |
|
205 |
+// read in a problem (in svmlight format) |
|
206 |
+int read_problem_dense(const mxArray *label_vec, const mxArray *instance_mat) |
|
207 |
+{ |
|
208 |
+ int i, j, k; |
|
209 |
+ int elements, max_index, sc, label_vector_row_num; |
|
210 |
+ double *samples, *labels; |
|
211 |
+ |
|
212 |
+ prob.x = NULL; |
|
213 |
+ prob.y = NULL; |
|
214 |
+ x_space = NULL; |
|
215 |
+ |
|
216 |
+ labels = mxGetPr(label_vec); |
|
217 |
+ samples = mxGetPr(instance_mat); |
|
218 |
+ sc = mxGetN(instance_mat); |
|
219 |
+ |
|
220 |
+ elements = 0; |
|
221 |
+ // the number of instance |
|
222 |
+ prob.l = mxGetM(instance_mat); |
|
223 |
+ label_vector_row_num = mxGetM(label_vec); |
|
224 |
+ |
|
225 |
+ if(label_vector_row_num!=prob.l) |
|
226 |
+ { |
|
227 |
+ mexPrintf("Length of label vector does not match # of instances.\n"); |
|
228 |
+ return -1; |
|
229 |
+ } |
|
230 |
+ |
|
231 |
+ if(param.kernel_type == PRECOMPUTED) |
|
232 |
+ elements = prob.l * (sc + 1); |
|
233 |
+ else |
|
234 |
+ { |
|
235 |
+ for(i = 0; i < prob.l; i++) |
|
236 |
+ { |
|
237 |
+ for(k = 0; k < sc; k++) |
|
238 |
+ if(samples[k * prob.l + i] != 0) |
|
239 |
+ elements++; |
|
240 |
+ // count the '-1' element |
|
241 |
+ elements++; |
|
242 |
+ } |
|
243 |
+ } |
|
244 |
+ |
|
245 |
+ prob.y = Malloc(double,prob.l); |
|
246 |
+ prob.x = Malloc(struct svm_node *,prob.l); |
|
247 |
+ x_space = Malloc(struct svm_node, elements); |
|
248 |
+ |
|
249 |
+ max_index = sc; |
|
250 |
+ j = 0; |
|
251 |
+ for(i = 0; i < prob.l; i++) |
|
252 |
+ { |
|
253 |
+ prob.x[i] = &x_space[j]; |
|
254 |
+ prob.y[i] = labels[i]; |
|
255 |
+ |
|
256 |
+ for(k = 0; k < sc; k++) |
|
257 |
+ { |
|
258 |
+ if(param.kernel_type == PRECOMPUTED || samples[k * prob.l + i] != 0) |
|
259 |
+ { |
|
260 |
+ x_space[j].index = k + 1; |
|
261 |
+ x_space[j].value = samples[k * prob.l + i]; |
|
262 |
+ j++; |
|
263 |
+ } |
|
264 |
+ } |
|
265 |
+ x_space[j++].index = -1; |
|
266 |
+ } |
|
267 |
+ |
|
268 |
+ if(param.gamma == 0) |
|
269 |
+ param.gamma = 1.0/max_index; |
|
270 |
+ |
|
271 |
+ if(param.kernel_type == PRECOMPUTED) |
|
272 |
+ for(i=0;i<prob.l;i++) |
|
273 |
+ { |
|
274 |
+ if((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index) |
|
275 |
+ { |
|
276 |
+ mexPrintf("Wrong input format: sample_serial_number out of range\n"); |
|
277 |
+ return -1; |
|
278 |
+ } |
|
279 |
+ } |
|
280 |
+ |
|
281 |
+ return 0; |
|
282 |
+} |
|
283 |
+ |
|
284 |
+int read_problem_sparse(const mxArray *label_vec, const mxArray *instance_mat) |
|
285 |
+{ |
|
286 |
+ int i, j, k, low, high; |
|
287 |
+ mwIndex *ir, *jc; |
|
288 |
+ int elements, max_index, num_samples, label_vector_row_num; |
|
289 |
+ double *samples, *labels; |
|
290 |
+ mxArray *instance_mat_col; // transposed instance sparse matrix |
|
291 |
+ |
|
292 |
+ prob.x = NULL; |
|
293 |
+ prob.y = NULL; |
|
294 |
+ x_space = NULL; |
|
295 |
+ |
|
296 |
+ // transpose instance matrix |
|
297 |
+ { |
|
298 |
+ mxArray *prhs[1], *plhs[1]; |
|
299 |
+ prhs[0] = mxDuplicateArray(instance_mat); |
|
300 |
+ if(mexCallMATLAB(1, plhs, 1, prhs, "transpose")) |
|
301 |
+ { |
|
302 |
+ mexPrintf("Error: cannot transpose training instance matrix\n"); |
|
303 |
+ return -1; |
|
304 |
+ } |
|
305 |
+ instance_mat_col = plhs[0]; |
|
306 |
+ mxDestroyArray(prhs[0]); |
|
307 |
+ } |
|
308 |
+ |
|
309 |
+ // each column is one instance |
|
310 |
+ labels = mxGetPr(label_vec); |
|
311 |
+ samples = mxGetPr(instance_mat_col); |
|
312 |
+ ir = mxGetIr(instance_mat_col); |
|
313 |
+ jc = mxGetJc(instance_mat_col); |
|
314 |
+ |
|
315 |
+ num_samples = mxGetNzmax(instance_mat_col); |
|
316 |
+ |
|
317 |
+ // the number of instance |
|
318 |
+ prob.l = mxGetN(instance_mat_col); |
|
319 |
+ label_vector_row_num = mxGetM(label_vec); |
|
320 |
+ |
|
321 |
+ if(label_vector_row_num!=prob.l) |
|
322 |
+ { |
|
323 |
+ mexPrintf("Length of label vector does not match # of instances.\n"); |
|
324 |
+ return -1; |
|
325 |
+ } |
|
326 |
+ |
|
327 |
+ elements = num_samples + prob.l; |
|
328 |
+ max_index = mxGetM(instance_mat_col); |
|
329 |
+ |
|
330 |
+ prob.y = Malloc(double,prob.l); |
|
331 |
+ prob.x = Malloc(struct svm_node *,prob.l); |
|
332 |
+ x_space = Malloc(struct svm_node, elements); |
|
333 |
+ |
|
334 |
+ j = 0; |
|
335 |
+ for(i=0;i<prob.l;i++) |
|
336 |
+ { |
|
337 |
+ prob.x[i] = &x_space[j]; |
|
338 |
+ prob.y[i] = labels[i]; |
|
339 |
+ low = jc[i], high = jc[i+1]; |
|
340 |
+ for(k=low;k<high;k++) |
|
341 |
+ { |
|
342 |
+ x_space[j].index = ir[k] + 1; |
|
343 |
+ x_space[j].value = samples[k]; |
|
344 |
+ j++; |
|
345 |
+ } |
|
346 |
+ x_space[j++].index = -1; |
|
347 |
+ } |
|
348 |
+ |
|
349 |
+ if(param.gamma == 0) |
|
350 |
+ param.gamma = 1.0/max_index; |
|
351 |
+ |
|
352 |
+ return 0; |
|
353 |
+} |
|
354 |
+ |
|
355 |
+static void fake_answer(mxArray *plhs[]) |
|
356 |
+{ |
|
357 |
+ plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL); |
|
358 |
+} |
|
359 |
+ |
|
360 |
+// Interface function of matlab |
|
361 |
+// now assume prhs[0]: label prhs[1]: features |
|
362 |
+void mexFunction( int nlhs, mxArray *plhs[], |
|
363 |
+ int nrhs, const mxArray *prhs[] ) |
|
364 |
+{ |
|
365 |
+ const char *error_msg; |
|
366 |
+ |
|
367 |
+ // fix random seed to have same results for each run |
|
368 |
+ // (for cross validation and probability estimation) |
|
369 |
+ srand(1); |
|
370 |
+ |
|
371 |
+ // Transform the input Matrix to libsvm format |
|
372 |
+ if(nrhs > 0 && nrhs < 4) |
|
373 |
+ { |
|
374 |
+ int err; |
|
375 |
+ |
|
376 |
+ if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) { |
|
377 |
+ mexPrintf("Error: label vector and instance matrix must be double\n"); |
|
378 |
+ fake_answer(plhs); |
|
379 |
+ return; |
|
380 |
+ } |
|
381 |
+ |
|
382 |
+ if(parse_command_line(nrhs, prhs, NULL)) |
|
383 |
+ { |
|
384 |
+ exit_with_help(); |
|
385 |
+ svm_destroy_param(¶m); |
|
386 |
+ fake_answer(plhs); |
|
387 |
+ return; |
|
388 |
+ } |
|
389 |
+ |
|
390 |
+ if(mxIsSparse(prhs[1])) |
|
391 |
+ { |
|
392 |
+ if(param.kernel_type == PRECOMPUTED) |
|
393 |
+ { |
|
394 |
+ // precomputed kernel requires dense matrix, so we make one |
|
395 |
+ mxArray *rhs[1], *lhs[1]; |
|
396 |
+ |
|
397 |
+ rhs[0] = mxDuplicateArray(prhs[1]); |
|
398 |
+ if(mexCallMATLAB(1, lhs, 1, rhs, "full")) |
|
399 |
+ { |
|
400 |
+ mexPrintf("Error: cannot generate a full training instance matrix\n"); |
|
401 |
+ svm_destroy_param(¶m); |
|
402 |
+ fake_answer(plhs); |
|
403 |
+ return; |
|
404 |
+ } |
|
405 |
+ err = read_problem_dense(prhs[0], lhs[0]); |
|
406 |
+ mxDestroyArray(lhs[0]); |
|
407 |
+ mxDestroyArray(rhs[0]); |
|
408 |
+ } |
|
409 |
+ else |
|
410 |
+ err = read_problem_sparse(prhs[0], prhs[1]); |
|
411 |
+ } |
|
412 |
+ else |
|
413 |
+ err = read_problem_dense(prhs[0], prhs[1]); |
|
414 |
+ |
|
415 |
+ // svmtrain's original code |
|
416 |
+ error_msg = svm_check_parameter(&prob, ¶m); |
|
417 |
+ |
|
418 |
+ if(err || error_msg) |
|
419 |
+ { |
|
420 |
+ if (error_msg != NULL) |
|
421 |
+ mexPrintf("Error: %s\n", error_msg); |
|
422 |
+ svm_destroy_param(¶m); |
|
423 |
+ free(prob.y); |
|
424 |
+ free(prob.x); |
|
425 |
+ free(x_space); |
|
426 |
+ fake_answer(plhs); |
|
427 |
+ return; |
|
428 |
+ } |
|
429 |
+ |
|
430 |
+ if(cross_validation) |
|
431 |
+ { |
|
432 |
+ double *ptr; |
|
433 |
+ plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL); |
|
434 |
+ ptr = mxGetPr(plhs[0]); |
|
435 |
+ ptr[0] = do_cross_validation(); |
|
436 |
+ } |
|
437 |
+ else |
|
438 |
+ { |
|
439 |
+ int nr_feat = mxGetN(prhs[1]); |
|
440 |
+ const char *error_msg; |
|
441 |
+ model = svm_train(&prob, ¶m); |
|
442 |
+ error_msg = model_to_matlab_structure(plhs, nr_feat, model); |
|
443 |
+ if(error_msg) |
|
444 |
+ mexPrintf("Error: can't convert libsvm model to matrix structure: %s\n", error_msg); |
|
445 |
+ svm_destroy_model(model); |
|
446 |
+ } |
|
447 |
+ svm_destroy_param(¶m); |
|
448 |
+ free(prob.y); |
|
449 |
+ free(prob.x); |
|
450 |
+ free(x_space); |
|
451 |
+ } |
|
452 |
+ else |
|
453 |
+ { |
|
454 |
+ exit_with_help(); |
|
455 |
+ fake_answer(plhs); |
|
456 |
+ return; |
|
457 |
+ } |
|
458 |
+} |
... | ... |
@@ -0,0 +1,91 @@ |
1 |
+function plotDecodePerformance(varargin) |
|
2 |
+% plotDecodePerformance(timeline,decodePerformance,nClasses,rawData) |
|
3 |
+ |
|
4 |
+if(nargin==1) |
|
5 |
+ inputStruct = cell2mat(varargin(1)); |
|
6 |
+ |
|
7 |
+ psthStart = inputStruct.psthStart; |
|
8 |
+ psthEnd = inputStruct.psthEnd; |
|
9 |
+ nClasses = inputStruct.nClasses; |
|
10 |
+ decodePerformance = inputStruct.decodePerformance; |
|
11 |
+ frameStart = inputStruct.frameShiftStart; |
|
12 |
+ frameEnd = inputStruct.frameShiftEnd; |
|
13 |
+ psth = inputStruct.rawTimeCourse; |
|
14 |
+ SubjectID = inputStruct.SubjectID; |
|
15 |
+ |
|
16 |
+ |
|
17 |
+elseif( nargin == 7) |
|
18 |
+ |
|
19 |
+ psthStart = cell2mat(varargin(1)); |
|
20 |
+ psthEnd = cell2mat(varargin(2)); |
|
21 |
+ nClasses = cell2mat(varargin(3)); |
|
22 |
+ decodePerformance = cell2mat(varargin(4)); |
|
23 |
+ frameStart = cell2mat(varargin(5)); |
|
24 |
+ frameEnd = cell2mat(varargin(6)); |
|
25 |
+ psth = varargin(7); |
|
26 |
+ psth = psth{1}; |
|
27 |
+ SubjectID = ''; |
|
28 |
+end |
|
29 |
+ |
|
30 |
+ f = figure; |
|
31 |
+ subplot(2,1,1); |
|
32 |
+ hold on; |
|
33 |
+ for voxel = 1:size(psth,2) |
|
34 |
+ for label = 1:size(psth{voxel},2) |
|
35 |
+ psthData = []; |
|
36 |
+ for timepoint = 1:size(psth{voxel}{label},2) |
|
37 |
+ psthData = nanmean(psth{voxel}{label})+voxel/100; |
|
38 |
+ end |
|
39 |
+ plot(psthStart:psthEnd,psthData,[colorChooser(voxel), lineStyleChooser(label)]); |
|
40 |
+ end |
|
41 |
+ end |
|
42 |
+% axis([psthStart psthEnd 0 0]) |
|
43 |
+ hold off |
|
44 |
+ |
|
45 |
+ subplot(2,1,2) |
|
46 |
+ hold on; |
|
47 |
+ plot(frameStart:frameEnd, decodePerformance ,'b'); |
|
48 |
+ chanceLevel = 100/nClasses; |
|
49 |
+ goodPredictionLevel = chanceLevel*1.5; |
|
50 |
+ plot([psthStart psthEnd],[chanceLevel chanceLevel],'r'); |
|
51 |
+ plot([psthStart psthEnd],[goodPredictionLevel goodPredictionLevel],'g'); |
|
52 |
+ axis([psthStart psthEnd 0 100]) |
|
53 |
+ |
|
54 |
+ hold off; |
|
55 |
+ |
|
56 |
+ title = sprintf('Subject %s, over %g voxel',SubjectID,size(psth,2)); |
|
57 |
+ set(f,'Name',title); |
|
58 |
+ display(sprintf('%s',title)); |
|
59 |
+ |
|
60 |
+ |
|
61 |
+ |
|
62 |
+end |
|
63 |
+ |
|
64 |
+function color = colorChooser(n) |
|
65 |
+ switch (mod(n,8)) |
|
66 |
+ case 0 |
|
67 |
+ color = 'y'; |
|
68 |
+ case 1 |
|
69 |
+ color = 'r'; |
|
70 |
+ case 2 |
|
71 |
+ color = 'b'; |
|
72 |
+ case 3 |
|
73 |
+ color = 'g'; |
|
74 |
+ otherwise |
|
75 |
+ color = 'k'; |
|
76 |
+ end |
|
77 |
+end |
|
78 |
+ |
|
79 |
+function style = lineStyleChooser(n) |
|
80 |
+switch(mod(n,4)) |
|
81 |
+ case 0 |
|
82 |
+ style = '--'; |
|
83 |
+ case 1 |
|
84 |
+ style = '-'; |
|
85 |
+ case 2 |
|
86 |
+ style = ':'; |
|
87 |
+ case 3 |
|
88 |
+ style = ':-'; |
|
89 |
+end |
|
90 |
+end |
|
91 |
+ |
... | ... |
@@ -0,0 +1,12 @@ |
1 |
+function sortedList = sortedAdd(element, list) |
|
2 |
+ if(isempty(list)) |
|
3 |
+ sortedList = element; |
|
4 |
+ return; |
|
5 |
+ end |
|
6 |
+ head = list(1); |
|
7 |
+ if element.id < head.id |
|
8 |
+ sortedList = [element list]; |
|
9 |
+ else |
|
10 |
+ sortedList = [head sortedAdd(element, list(2:length(list)))]; |
|
11 |
+ end |
|
12 |
+end |
|
0 | 13 |
\ No newline at end of file |
... | ... |
@@ -0,0 +1,197 @@ |
1 |
+function spm_SVMCrossVal |
|
2 |
+ |
|
3 |
+ |
|
4 |
+% Initialize and hide the GUI as it is being constructed. |
|
5 |
+ frameWidth=450; |
|
6 |
+ frameHeight=450; |
|
7 |
+ frame = figure('Visible','off','Position',[0,0,frameWidth,frameHeight]); |
|
8 |
+ movegui(frame,'west'); % get this thing visible on smaller displays. |
|
9 |
+ |
|
10 |
+ set(frame,'Name','SVMCrossVal Decode Performance 4 SPM'); |
|
11 |
+ set(frame,'NumberTitle','off'); |
|
12 |
+ set(frame,'MenuBar','none'); |
|
13 |
+ set(frame,'Color',get(0,'defaultUicontrolBackgroundColor')); |
|
14 |
+ set(frame,'Resize','off'); |
|
15 |
+ set(frame,'Units','normalize'); |
|
16 |
+ |
|
17 |
+ |
|
18 |
+ optionLineHeight = 1.0/16.0; |
|
19 |
+ controlElementHeight=optionLineHeight*(1.0/1.5)*frameHeight; |
|
20 |
+ pMain = uipanel(frame,'Title','Main Panel', 'Position',[0 optionLineHeight*10 frameWidth optionLineHeight*6]); |
|
21 |
+ pAdvanced = uipanel(frame,'Title','Advanced Options', 'Position',[0 optionLineHeight*5 frameWidth optionLineHeight*5]); |
|
22 |
+ pDisplay = uipanel(frame,'Title','Display Options', 'Position',[0 optionLineHeight*1 frameWidth optionLineHeight*4]); |
|
23 |
+ btnRunButton = uicontrol(frame,'Tag','run','String','Run PSTH','Position',[0 optionLineHeight*0 frameWidth frameHeight/16]); |
|
24 |
+ |
|
25 |
+ %Main |
|
26 |
+ firstColumn = 0.00*frameWidth; |
|
27 |
+ secondColumn = 0.33*frameWidth; |
|
28 |
+ thirdColumn = 0.66*frameWidth; |
|
29 |
+ |
|
30 |
+ firstRow = 6.3*controlElementHeight; |
|
31 |
+ secondRow = 5.3*controlElementHeight; |
|
32 |
+ thirdRow = 4.3*controlElementHeight; |
|
33 |
+ fourthRow = 3.3*controlElementHeight; |
|
34 |
+ fifthRow = 2.3*controlElementHeight; |
|
35 |
+ sixthRow = 1.0*controlElementHeight; |
|
36 |
+ |
|
37 |
+ createLabel(pMain, [firstColumn firstRow 0.33*frameWidth controlElementHeight],'Position'); % lPosition |
|
38 |
+ createLabel(pMain, [firstColumn secondRow 0.33*frameWidth controlElementHeight],'Voxel Sphere Radius' );%lRadius |
|
39 |
+ lEvents = createLabel(pMain, [firstColumn thirdRow 0.33*frameWidth controlElementHeight],'Event List' ); |
|
40 |
+ lSessions = createLabel(pMain, [firstColumn fourthRow 0.33*frameWidth controlElementHeight],'Session List' ); |
|
41 |
+ lNormalize = createLabel(pMain, [firstColumn fifthRow 0.33*frameWidth controlElementHeight],'Normalization Method' ); |
|
42 |
+ lParametric = createLabel(pMain, [firstColumn sixthRow 0.25*frameWidth controlElementHeight],'Parametric Modulation'); |
|
43 |
+ lParametricFactor = createLabel(pMain, [(secondColumn+0.33*frameWidth*0.2) sixthRow 0.33*frameWidth*0.8 controlElementHeight],'Modulation Factor'); |
|
44 |
+ |
|
45 |
+ model.txtPosition = createTextField(pMain, [secondColumn firstRow 0.33*frameWidth controlElementHeight],'0 0 0'); |
|
46 |
+ btnParseHReg = createButton(pMain, [thirdColumn firstRow 0.33*frameWidth controlElementHeight],'hReg', 'parse hReg',model.txtPosition); |
|
47 |
+ |
|
48 |
+ model.txtRadius = createTextField(pMain, [secondColumn secondRow 0.33*frameWidth controlElementHeight],'3'); |
|
49 |
+ |
|
50 |
+ model.txtEvents = createTextField(pMain, [secondColumn thirdRow 0.33*frameWidth controlElementHeight],''); |
|
51 |
+ btnEvents = createButton(pMain, [thirdColumn thirdRow 0.33*frameWidth controlElementHeight],'events', 'show Event List',model.txtEvents); |
|
52 |
+ set(btnEvents,'Enable','off'); |
|
53 |
+ |
|
54 |
+ model.txtSessions = createTextField(pMain, [secondColumn fourthRow 0.33*frameWidth controlElementHeight],''); |
|
55 |
+ |
|
56 |
+ model.normalization = createDropDown(pMain, [secondColumn fifthRow 0.33*frameWidth controlElementHeight],... |
|
57 |
+ defaults.tools.psth4spm.normalizeSelectionModel); |
|
58 |
+ |
|
59 |
+ model.chkParametric = uicontrol(pMain,'Position',[secondColumn sixthRow 0.33*frameWidth*0.2 controlElementHeight],'Style','checkbox'); |
|
60 |
+ model.txtParametricMappingFactor = createTextField(pMain, [thirdColumn sixthRow 0.33*frameWidth controlElementHeight],'1.0'); |
|
61 |
+ set(model.txtParametricMappingFactor,'Enable','off'); |
|
62 |
+ set(model.chkParametric,'Callback',{@cbToggleEnableTarget,model.txtParametricMappingFactor}); |
|
63 |
+ |
|
64 |
+ %Advanced |
|
65 |
+ firstColumn = 0.00*frameWidth; |
|
66 |
+ secondColumn = 0.33*frameWidth; |
|
67 |
+ thirdColumn = 0.66*frameWidth; |
|
68 |
+ fourthColumn = 0.84*frameWidth; |
|
69 |
+ |
|
70 |
+ firstRow = 5.5*controlElementHeight; |
|
71 |
+ secondRow = 4.5*controlElementHeight; |
|
72 |
+ thirdRow = 3.5*controlElementHeight; |
|
73 |
+ fourthRow = 2*controlElementHeight; |
|
74 |
+ |
|
75 |
+ lStart = createLabel(pAdvanced, [secondColumn firstRow 0.33*frameWidth controlElementHeight],'Start [sec]'); |
|
76 |
+ lEnd = createLabel(pAdvanced, [thirdColumn firstRow 0.33*frameWidth controlElementHeight],'End [sec]'); |
|
77 |
+ lBaseline = createLabel(pAdvanced,[firstColumn secondRow 0.33*frameWidth controlElementHeight],'Baseline'); |
|
78 |
+ lTimeRange = createLabel(pAdvanced,[firstColumn thirdRow 0.33*frameWidth controlElementHeight],'Time Range (X-Axis)'); |
|
79 |
+ lTemporalResolutionMultiplyer = createLabel(pAdvanced, [firstColumn fourthRow 0.33*frameWidth controlElementHeight],'TR Factor'); |
|
80 |
+ |
|
81 |
+ |
|
82 |
+ model.txtBaselineStart = createTextField(pAdvanced,[secondColumn secondRow 0.25*frameWidth controlElementHeight],'-3.0'); |
|
83 |
+ model.txtBaselineEnd = createTextField(pAdvanced,[thirdColumn secondRow 0.25*frameWidth controlElementHeight],'-1.0'); |
|
84 |
+ model.txtTimeRangeStart = createTextField(pAdvanced,[secondColumn thirdRow 0.25*frameWidth controlElementHeight],'-5.0'); |
|
85 |
+ model.txtTimeRangeEnd = createTextField(pAdvanced,[thirdColumn thirdRow 0.25*frameWidth controlElementHeight],'45.0'); |
|
86 |
+ |
|
87 |
+ |
|
88 |
+ model.txtTemporalResolution = createTextField(pAdvanced,[thirdColumn fourthRow 0.18*frameWidth controlElementHeight],''); |
|
89 |
+ set(model.txtTemporalResolution,'Enable','inactive'); |
|
90 |
+ try |
|
91 |
+ tr = evalin('base','SPM.xsDes.Interscan_interval(1:end-3)'); |
|
92 |
+ set(model.txtTemporalResolution,'String',tr); |
|
93 |
+ catch |
|
94 |
+ btnParseTemporalResolution = createButton(pAdvanced,[fourthColumn fourthRow 0.15*frameWidth controlElementHeight],'TR','parse TR',model.txtTemporalResolution); |
|
95 |
+ end |
|
96 |
+ model.txtTemporalResolutionFactor = createTextField(pAdvanced,[secondColumn fourthRow 0.25*frameWidth controlElementHeight],'0.5'); |
|
97 |
+ |
|
98 |
+ %Display |
|
99 |
+ firstColumn = 0.00*frameWidth; |
|
100 |
+ secondColumn = 0.33*frameWidth; |
|
101 |
+ thirdColumn = 0.66*frameWidth; |
|
102 |
+ |
|
103 |
+ firstRow = 4*controlElementHeight; |
|
104 |
+ secondRow = 3*controlElementHeight; |
|
105 |
+ thirdRow = 2*controlElementHeight; |
|
106 |
+ fourthRow = 0.5*controlElementHeight; |
|
107 |
+ |
|
108 |
+ lAxisUpper = createLabel(pDisplay, [firstColumn firstRow 0.33*frameWidth controlElementHeight],'Y-Axis Upper Bound'); |
|
109 |
+ lAxisLower = createLabel(pDisplay, [firstColumn secondRow 0.33*frameWidth controlElementHeight],'Y-Axis Lower Bound'); |
|
110 |
+ lColorScheme = createLabel(pDisplay, [firstColumn thirdRow 0.33*frameWidth controlElementHeight],'Color Scheme'); |
|
111 |
+ lShowLegend = createLabel(pDisplay, [secondColumn+0.33*frameWidth*0.2 fourthRow 0.33*frameWidth controlElementHeight],'Show Legend'); |
|
112 |
+ lShowFiltered = createLabel(pDisplay, [thirdColumn+0.33*frameWidth*0.2 fourthRow 0.33*frameWidth controlElementHeight],'Show Filtered'); |
|
113 |
+ |
|
114 |
+ model.txtYAxisUpper = createTextField(pDisplay,[secondColumn firstRow 0.33*frameWidth controlElementHeight],'0'); |
|
115 |
+ model.txtYAxisLower = createTextField(pDisplay,[secondColumn secondRow 0.33*frameWidth controlElementHeight],'0'); |
|
116 |
+ |
|
117 |
+ model.colorScheme = createDropDown(pDisplay,[secondColumn thirdRow 0.33*frameWidth controlElementHeight],defaults.tools.psth4spm.colorschemeSelectionModel); |
|
118 |
+ |
|
119 |
+ model.chkShowLegend = uicontrol(pDisplay,'Position',[secondColumn fourthRow 0.33*frameWidth*0.1 controlElementHeight],'Style','checkbox','Value',1); |
|
120 |
+ model.chkShowUnfiltered = uicontrol(pDisplay,'Position',[thirdColumn fourthRow 0.33*frameWidth*0.1 controlElementHeight],'Style','checkbox','Value',1); |
|
121 |
+ |
|
122 |
+ set(btnRunButton,'Callback',{@cbRunPSTH,model}); |
|
123 |
+ set(frame,'Visible','on'); |
|
124 |
+end |
|
125 |
+ |
|
126 |
+% this is a function callback |
|
127 |
+function cbToggleEnableTarget(src,eventData,target) |
|
128 |
+ if(strcmp(get(target,'Enable'),'off')) |
|
129 |
+% display('is off. set on'); |
|
130 |
+ set(target,'Enable','on'); |
|
131 |
+ else |
|
132 |
+% display('is on, set off'); |
|
133 |
+ set(target,'Enable','off'); |
|
134 |
+ end |
|
135 |
+end |
|
136 |
+ |
|
137 |
+function cbParseVariable(src,evnt,target) |
|
138 |
+% display('button pressed'); |
|
139 |
+ switch(get(src,'Tag')) |
|
140 |
+ case 'hReg' |
|
141 |
+ pos = num2str(evalin('base','spm_XYZreg(''GetCoords'',hReg)')'); |
|
142 |
+ set(target,'String',pos); |
|
143 |
+ case 'TR' |
|
144 |
+ tr = evalin('base','SPM.xsDes.Interscan_interval(1:end-3)'); |
|
145 |
+ set(target,'String',tr); |
|
146 |
+% set(src,'Enable','off'); |
|
147 |
+ set(target,'Visible','on'); |
|
148 |
+ otherwise |
|
149 |
+ display(['no parse Rule for Button Tagged' get(src,'Tag')]); |
|
150 |
+ end |
|
151 |
+end |
|
152 |
+ |
|
153 |
+function label = createLabel(parent, pos, labelText) |
|
154 |
+ label = uicontrol(parent,'Style','text','String',labelText,'Position',pos); |
|
155 |
+ set(label,'HorizontalAlignment','left'); |
|
156 |
+ set(label,'Units','characters'); |
|
157 |
+% set(label,'BackgroundColor','r'); |
|
158 |
+end |
|
159 |
+ |
|
160 |
+function btn = createButton(parent,pos,tag,labelText,cbArgs) |
|
161 |
+ btn = uicontrol(parent,'Position',pos,'String',labelText,'tag',tag); |
|
162 |
+ set(btn,'Callback',{@cbParseVariable,cbArgs}); |
|
163 |
+% set(btn,'BackgroundColor','b'); |
|
164 |
+end |
|
165 |
+ |
|
166 |
+function txt = createTextField(parent,pos,model) |
|
167 |
+ txt = uicontrol(parent,'Style','edit','String',model,'Position',pos); |
|
168 |
+ set(txt,'BackgroundColor','w'); |
|
169 |
+end |
|
170 |
+ |
|
171 |
+function drpField = createDropDown(parent,pos,selectionModel) |
|
172 |
+ drpField = uicontrol(parent,'Style','popupmenu','Position',pos); |
|
173 |
+ set(drpField,'String',selectionModel.Strings); |
|
174 |
+ set(drpField,'BackgroundColor','w'); |
|
175 |
+end |
|
176 |
+ |
|
177 |
+ |
|
178 |
+function cbRunPSTH(src,evnt,model) |
|
179 |
+ |
|
180 |
+ % TODO test parameter values |
|
181 |
+ |
|
182 |
+ if isSane(model) |
|
183 |
+ set(0,'userdata',model); |
|
184 |
+% set(src,'Enable','off'); |
|
185 |
+ evalin('base','runPSTH4SPM(SPM)'); |
|
186 |
+% set(src,'Enable','on'); |
|
187 |
+ else |
|
188 |
+ %todo error beep! |
|
189 |
+ error('spmtoolbox:SVMCrossVal:paramcheck','please verify all parameters'); |
|
190 |
+ end |
|
191 |
+ |
|
192 |
+end |
|
193 |
+ |
|
194 |
+ |
|
195 |
+ |
|
196 |
+ |
|
197 |
+ |
... | ... |
@@ -0,0 +1,18 @@ |
1 |
+%timePointToImageNumber type is optional |
|
2 |
+function imgNumber = timePointToImageNumber(timepoint, type)% timepoint in ms |
|
3 |
+ switch type |
|
4 |
+ case 's' |
|
5 |
+ imgNumber = timePointToImageNumber(timepoint*1000,'ms'); |
|
6 |
+ return; |
|
7 |
+ case 'ms' |
|
8 |
+ imageTimeResolution = 2000; %ms |
|
9 |
+ imgNumber = round(timepoint/imageTimeResolution); |
|
10 |
+ return; |
|
11 |
+ case 'image' |
|
12 |
+ imgNumber = timepoint; |
|
13 |
+ return; |
|
14 |
+ otherwise |
|
15 |
+ imgNumber = timePointToImageNumber(timepoint,'ms'); |
|
16 |
+ return; |
|
17 |
+ end |
|
18 |
+end |
|
0 | 19 |
\ No newline at end of file |
1 | 20 |